Abstract

A complete module for single-photon counting and timing is demonstrated in a single chip. Features comparable with or better than commercially available macroscopic modules are obtained by integration of an active-quenching and active-reset circuit in complementary metal-oxide semiconductor technology together with a single-photon avalanche diode (SPAD). The integrated SPAD has a 12-μm-diameter sensitive area and operates with an overvoltage above breakdown adjustable up to 20V. With a 5-V overvoltage the photon detection efficiency peaks above 40% around 500nm, and the dark-counting rate is lower than 600  countss at room temperature. The overall counting dead time is 33ns.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, Appl. Opt. 35, 1956 (1996).
    [CrossRef] [PubMed]
  2. P. Antognetti, S. Cova, and A. Longoni, in The Proceedings of the Second Ispra Nuclear Electronics Symposium, Euratom Publication EUR 5370e (Euratom, 1975), pp. 453–456.
  3. S. Cova, A. Longoni, and A. Andreoni, Rev. Sci. Instrum. 52, 408 (1981).
    [CrossRef]
  4. H. Dautet, P. Deschampes, B. Dion, A. D. MacGregor, D. MacSween, R. J. McIntyre, C. Trottier, and P. Webb, Appl. Opt. 32, 3894 (1993).
    [CrossRef] [PubMed]
  5. “Single-Photon Counting Module, SPCM-AQR Series, Datasheet” (Perkin Elmer Optoelectronics, Vaudreuil, Quebec, Canada), http://opto.perkinelmer.com.
  6. A. Rochas, M. Gani, B. Furrer, P. A. Besse, R. S. Popovic, M. Ribordy, and N. Gisin, Rev. Sci. Instrum. 74, 3263 (2003).
    [CrossRef]
  7. A. Rochas, P. A. Besse, and R. S. Popovic, Sens. Actuators A 110, 124 (2004).
    [CrossRef]
  8. F. Zappa, S. Cova, and M. Ghioni, “Monolithic circuit of active quenching and active reset for avalanche photodiodes,” U.S. patent 6,541,752 B2 (April 1, 2003).
  9. F. Zappa, A. Lotito, A. C. Giudice, S. Cova, and M. Ghioni, IEEE J. Solid-State Circuits 38, 1298 (2003).
    [CrossRef]
  10. M. Ghioni, S. Cova, A. Lacaita, and G. Ripamonti, Electron. Lett. 24, 1476 (1988).
    [CrossRef]
  11. A. Lacaita, M. Ghioni, and S. Cova, Electron. Lett. 25, 841 (1989).
    [CrossRef]
  12. W. J. Kindt and H. W. van Zeijl, IEEE Trans. Nucl. Sci. 45, 715 (1998).
    [CrossRef]
  13. S. Cova, A. Lacaita, and G. Ripamonti, IEEE Electron Device Lett. 12, 685 (1991).
    [CrossRef]

2004 (1)

A. Rochas, P. A. Besse, and R. S. Popovic, Sens. Actuators A 110, 124 (2004).
[CrossRef]

2003 (2)

F. Zappa, A. Lotito, A. C. Giudice, S. Cova, and M. Ghioni, IEEE J. Solid-State Circuits 38, 1298 (2003).
[CrossRef]

A. Rochas, M. Gani, B. Furrer, P. A. Besse, R. S. Popovic, M. Ribordy, and N. Gisin, Rev. Sci. Instrum. 74, 3263 (2003).
[CrossRef]

1998 (1)

W. J. Kindt and H. W. van Zeijl, IEEE Trans. Nucl. Sci. 45, 715 (1998).
[CrossRef]

1996 (1)

1993 (1)

1991 (1)

S. Cova, A. Lacaita, and G. Ripamonti, IEEE Electron Device Lett. 12, 685 (1991).
[CrossRef]

1989 (1)

A. Lacaita, M. Ghioni, and S. Cova, Electron. Lett. 25, 841 (1989).
[CrossRef]

1988 (1)

M. Ghioni, S. Cova, A. Lacaita, and G. Ripamonti, Electron. Lett. 24, 1476 (1988).
[CrossRef]

1981 (1)

S. Cova, A. Longoni, and A. Andreoni, Rev. Sci. Instrum. 52, 408 (1981).
[CrossRef]

Andreoni, A.

S. Cova, A. Longoni, and A. Andreoni, Rev. Sci. Instrum. 52, 408 (1981).
[CrossRef]

Antognetti, P.

P. Antognetti, S. Cova, and A. Longoni, in The Proceedings of the Second Ispra Nuclear Electronics Symposium, Euratom Publication EUR 5370e (Euratom, 1975), pp. 453–456.

Besse, P. A.

A. Rochas, P. A. Besse, and R. S. Popovic, Sens. Actuators A 110, 124 (2004).
[CrossRef]

A. Rochas, M. Gani, B. Furrer, P. A. Besse, R. S. Popovic, M. Ribordy, and N. Gisin, Rev. Sci. Instrum. 74, 3263 (2003).
[CrossRef]

Cova, S.

F. Zappa, A. Lotito, A. C. Giudice, S. Cova, and M. Ghioni, IEEE J. Solid-State Circuits 38, 1298 (2003).
[CrossRef]

S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, Appl. Opt. 35, 1956 (1996).
[CrossRef] [PubMed]

S. Cova, A. Lacaita, and G. Ripamonti, IEEE Electron Device Lett. 12, 685 (1991).
[CrossRef]

A. Lacaita, M. Ghioni, and S. Cova, Electron. Lett. 25, 841 (1989).
[CrossRef]

M. Ghioni, S. Cova, A. Lacaita, and G. Ripamonti, Electron. Lett. 24, 1476 (1988).
[CrossRef]

S. Cova, A. Longoni, and A. Andreoni, Rev. Sci. Instrum. 52, 408 (1981).
[CrossRef]

P. Antognetti, S. Cova, and A. Longoni, in The Proceedings of the Second Ispra Nuclear Electronics Symposium, Euratom Publication EUR 5370e (Euratom, 1975), pp. 453–456.

F. Zappa, S. Cova, and M. Ghioni, “Monolithic circuit of active quenching and active reset for avalanche photodiodes,” U.S. patent 6,541,752 B2 (April 1, 2003).

Dautet, H.

Deschampes, P.

Dion, B.

Furrer, B.

A. Rochas, M. Gani, B. Furrer, P. A. Besse, R. S. Popovic, M. Ribordy, and N. Gisin, Rev. Sci. Instrum. 74, 3263 (2003).
[CrossRef]

Gani, M.

A. Rochas, M. Gani, B. Furrer, P. A. Besse, R. S. Popovic, M. Ribordy, and N. Gisin, Rev. Sci. Instrum. 74, 3263 (2003).
[CrossRef]

Ghioni, M.

F. Zappa, A. Lotito, A. C. Giudice, S. Cova, and M. Ghioni, IEEE J. Solid-State Circuits 38, 1298 (2003).
[CrossRef]

S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, Appl. Opt. 35, 1956 (1996).
[CrossRef] [PubMed]

A. Lacaita, M. Ghioni, and S. Cova, Electron. Lett. 25, 841 (1989).
[CrossRef]

M. Ghioni, S. Cova, A. Lacaita, and G. Ripamonti, Electron. Lett. 24, 1476 (1988).
[CrossRef]

F. Zappa, S. Cova, and M. Ghioni, “Monolithic circuit of active quenching and active reset for avalanche photodiodes,” U.S. patent 6,541,752 B2 (April 1, 2003).

Gisin, N.

A. Rochas, M. Gani, B. Furrer, P. A. Besse, R. S. Popovic, M. Ribordy, and N. Gisin, Rev. Sci. Instrum. 74, 3263 (2003).
[CrossRef]

Giudice, A. C.

F. Zappa, A. Lotito, A. C. Giudice, S. Cova, and M. Ghioni, IEEE J. Solid-State Circuits 38, 1298 (2003).
[CrossRef]

Kindt, W. J.

W. J. Kindt and H. W. van Zeijl, IEEE Trans. Nucl. Sci. 45, 715 (1998).
[CrossRef]

Lacaita, A.

S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, Appl. Opt. 35, 1956 (1996).
[CrossRef] [PubMed]

S. Cova, A. Lacaita, and G. Ripamonti, IEEE Electron Device Lett. 12, 685 (1991).
[CrossRef]

A. Lacaita, M. Ghioni, and S. Cova, Electron. Lett. 25, 841 (1989).
[CrossRef]

M. Ghioni, S. Cova, A. Lacaita, and G. Ripamonti, Electron. Lett. 24, 1476 (1988).
[CrossRef]

Longoni, A.

S. Cova, A. Longoni, and A. Andreoni, Rev. Sci. Instrum. 52, 408 (1981).
[CrossRef]

P. Antognetti, S. Cova, and A. Longoni, in The Proceedings of the Second Ispra Nuclear Electronics Symposium, Euratom Publication EUR 5370e (Euratom, 1975), pp. 453–456.

Lotito, A.

F. Zappa, A. Lotito, A. C. Giudice, S. Cova, and M. Ghioni, IEEE J. Solid-State Circuits 38, 1298 (2003).
[CrossRef]

MacGregor, A. D.

MacSween, D.

McIntyre, R. J.

Popovic, R. S.

A. Rochas, P. A. Besse, and R. S. Popovic, Sens. Actuators A 110, 124 (2004).
[CrossRef]

A. Rochas, M. Gani, B. Furrer, P. A. Besse, R. S. Popovic, M. Ribordy, and N. Gisin, Rev. Sci. Instrum. 74, 3263 (2003).
[CrossRef]

Ribordy, M.

A. Rochas, M. Gani, B. Furrer, P. A. Besse, R. S. Popovic, M. Ribordy, and N. Gisin, Rev. Sci. Instrum. 74, 3263 (2003).
[CrossRef]

Ripamonti, G.

S. Cova, A. Lacaita, and G. Ripamonti, IEEE Electron Device Lett. 12, 685 (1991).
[CrossRef]

M. Ghioni, S. Cova, A. Lacaita, and G. Ripamonti, Electron. Lett. 24, 1476 (1988).
[CrossRef]

Rochas, A.

A. Rochas, P. A. Besse, and R. S. Popovic, Sens. Actuators A 110, 124 (2004).
[CrossRef]

A. Rochas, M. Gani, B. Furrer, P. A. Besse, R. S. Popovic, M. Ribordy, and N. Gisin, Rev. Sci. Instrum. 74, 3263 (2003).
[CrossRef]

Samori, C.

Trottier, C.

van Zeijl, H. W.

W. J. Kindt and H. W. van Zeijl, IEEE Trans. Nucl. Sci. 45, 715 (1998).
[CrossRef]

Webb, P.

Zappa, F.

F. Zappa, A. Lotito, A. C. Giudice, S. Cova, and M. Ghioni, IEEE J. Solid-State Circuits 38, 1298 (2003).
[CrossRef]

S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, Appl. Opt. 35, 1956 (1996).
[CrossRef] [PubMed]

F. Zappa, S. Cova, and M. Ghioni, “Monolithic circuit of active quenching and active reset for avalanche photodiodes,” U.S. patent 6,541,752 B2 (April 1, 2003).

Appl. Opt. (2)

Electron. Lett. (2)

M. Ghioni, S. Cova, A. Lacaita, and G. Ripamonti, Electron. Lett. 24, 1476 (1988).
[CrossRef]

A. Lacaita, M. Ghioni, and S. Cova, Electron. Lett. 25, 841 (1989).
[CrossRef]

IEEE Electron Device Lett. (1)

S. Cova, A. Lacaita, and G. Ripamonti, IEEE Electron Device Lett. 12, 685 (1991).
[CrossRef]

IEEE J. Solid-State Circuits (1)

F. Zappa, A. Lotito, A. C. Giudice, S. Cova, and M. Ghioni, IEEE J. Solid-State Circuits 38, 1298 (2003).
[CrossRef]

IEEE Trans. Nucl. Sci. (1)

W. J. Kindt and H. W. van Zeijl, IEEE Trans. Nucl. Sci. 45, 715 (1998).
[CrossRef]

Rev. Sci. Instrum. (2)

S. Cova, A. Longoni, and A. Andreoni, Rev. Sci. Instrum. 52, 408 (1981).
[CrossRef]

A. Rochas, M. Gani, B. Furrer, P. A. Besse, R. S. Popovic, M. Ribordy, and N. Gisin, Rev. Sci. Instrum. 74, 3263 (2003).
[CrossRef]

Sens. Actuators A (1)

A. Rochas, P. A. Besse, and R. S. Popovic, Sens. Actuators A 110, 124 (2004).
[CrossRef]

Other (3)

F. Zappa, S. Cova, and M. Ghioni, “Monolithic circuit of active quenching and active reset for avalanche photodiodes,” U.S. patent 6,541,752 B2 (April 1, 2003).

“Single-Photon Counting Module, SPCM-AQR Series, Datasheet” (Perkin Elmer Optoelectronics, Vaudreuil, Quebec, Canada), http://opto.perkinelmer.com.

P. Antognetti, S. Cova, and A. Longoni, in The Proceedings of the Second Ispra Nuclear Electronics Symposium, Euratom Publication EUR 5370e (Euratom, 1975), pp. 453–456.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Cross section of the p + n integrated SPAD. Dashed zones denote depleted regions. The avalanche can be triggered by photons absorbed in the depletion layer of the active junction (center) and in the underlying neutral n region.

Fig. 2
Fig. 2

Block diagram (left) and photograph (right) of the monolithic photon-counting and timing module. The chip size is 0.7 mm × 1 mm . GND, ground.

Fig. 3
Fig. 3

Waveforms at the SPAD cathode (trace 1) and at the OUT of the chip (trace 2) in operation at V high = 10 V with the shortest hold-off time. The resulting dead time is 33 ns . Trailing transitions are due to the random arrival of following photons.

Fig. 4
Fig. 4

Photon detection efficiency at two overvoltages. The responsivity ripple is due to oxide layers above the SPAD’s active area.

Fig. 5
Fig. 5

Dark-counting rate versus chip temperature at two overvoltages.

Fig. 6
Fig. 6

Afterpulsing probability at a 5 - V overvoltage, measured with 55- and 200 - ns hold-off times. The total afterpulsing probabilities are 2.6% and 0.02%, respectively.

Fig. 7
Fig. 7

Photon-timing distribution measured at a 10 - V overvoltage.

Metrics