Abstract

We analyze laser damage precursor evolution under multiple irradiations by changing test parameters such as shot number, wavelength, shot frequency, and test location (bulk or surface). The experimental data exhibit different behaviors under repetitive shots regarding the damage precursor densities and thresholds. The results provide new information for understanding the laser damage initiation process in silica. Furthermore, the data permit us to predict the lifetime of optical components under multiple irradiations.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Lasers and laser-related equipment—Determination of laser-induced damage threshold of optical surfaces—Parts 1 and 2, ISO 11254-1 and ISO 11254-2 (International Organization for Standardization, Geneva, Switzerland, 2001).
  2. S. Laux, H. Bernitzki, M. Klaus, H. Lauth, and N. Kaiser, Proc. SPIE 4347, 13 (2001).
    [CrossRef]
  3. A. E. Chmel, Mater. Sci. Eng., B 49, 175 (1997).
    [CrossRef]
  4. L. Gallais and J. Y. Natoli, Appl. Opt. 42, 960 (2003).
    [CrossRef] [PubMed]
  5. M. J. Soileau, W. E. Williams, and E. W. Van Stryland, Opt. Eng. 28, 1133 (1989).
    [CrossRef]
  6. C. A. Klein, J. Opt. Soc. Am. B 10, 2416 (1993).
    [CrossRef]
  7. J. Y. Natoli, L. Gallais, H. Akhouayri, and C. Amra, Appl. Opt. 41, 3156 (2002).
    [CrossRef] [PubMed]
  8. L. Gallais, J. Y. Natoli, and C. Amra, Opt. Express 10, 1465 (2002), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  9. S. Demos and M. Staggs, Opt. Express 10, 1444 (2002), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  10. J. Menapace, J. Peterson, M. Penetrante, and P. Miller, ‘‘Combined advanced finishing and UV laser conditioning process for producing damage resistance optics,’’ U.S. Patent WO 02/098811 A1 (December 12, 2002).

2003 (1)

2002 (3)

2001 (1)

S. Laux, H. Bernitzki, M. Klaus, H. Lauth, and N. Kaiser, Proc. SPIE 4347, 13 (2001).
[CrossRef]

1997 (1)

A. E. Chmel, Mater. Sci. Eng., B 49, 175 (1997).
[CrossRef]

1993 (1)

1989 (1)

M. J. Soileau, W. E. Williams, and E. W. Van Stryland, Opt. Eng. 28, 1133 (1989).
[CrossRef]

Akhouayri, H.

Amra, C.

Bernitzki, H.

S. Laux, H. Bernitzki, M. Klaus, H. Lauth, and N. Kaiser, Proc. SPIE 4347, 13 (2001).
[CrossRef]

Chmel, A. E.

A. E. Chmel, Mater. Sci. Eng., B 49, 175 (1997).
[CrossRef]

Demos, S.

Gallais, L.

Kaiser, N.

S. Laux, H. Bernitzki, M. Klaus, H. Lauth, and N. Kaiser, Proc. SPIE 4347, 13 (2001).
[CrossRef]

Klaus, M.

S. Laux, H. Bernitzki, M. Klaus, H. Lauth, and N. Kaiser, Proc. SPIE 4347, 13 (2001).
[CrossRef]

Klein, C. A.

Lauth, H.

S. Laux, H. Bernitzki, M. Klaus, H. Lauth, and N. Kaiser, Proc. SPIE 4347, 13 (2001).
[CrossRef]

Laux, S.

S. Laux, H. Bernitzki, M. Klaus, H. Lauth, and N. Kaiser, Proc. SPIE 4347, 13 (2001).
[CrossRef]

Menapace, J.

J. Menapace, J. Peterson, M. Penetrante, and P. Miller, ‘‘Combined advanced finishing and UV laser conditioning process for producing damage resistance optics,’’ U.S. Patent WO 02/098811 A1 (December 12, 2002).

Miller, P.

J. Menapace, J. Peterson, M. Penetrante, and P. Miller, ‘‘Combined advanced finishing and UV laser conditioning process for producing damage resistance optics,’’ U.S. Patent WO 02/098811 A1 (December 12, 2002).

Natoli, J. Y.

Penetrante, M.

J. Menapace, J. Peterson, M. Penetrante, and P. Miller, ‘‘Combined advanced finishing and UV laser conditioning process for producing damage resistance optics,’’ U.S. Patent WO 02/098811 A1 (December 12, 2002).

Peterson, J.

J. Menapace, J. Peterson, M. Penetrante, and P. Miller, ‘‘Combined advanced finishing and UV laser conditioning process for producing damage resistance optics,’’ U.S. Patent WO 02/098811 A1 (December 12, 2002).

Soileau, M. J.

M. J. Soileau, W. E. Williams, and E. W. Van Stryland, Opt. Eng. 28, 1133 (1989).
[CrossRef]

Staggs, M.

Van Stryland, E. W.

M. J. Soileau, W. E. Williams, and E. W. Van Stryland, Opt. Eng. 28, 1133 (1989).
[CrossRef]

Williams, W. E.

M. J. Soileau, W. E. Williams, and E. W. Van Stryland, Opt. Eng. 28, 1133 (1989).
[CrossRef]

Appl. Opt. (2)

J. Opt. Soc. Am. B (1)

Mater. Sci. Eng., B (1)

A. E. Chmel, Mater. Sci. Eng., B 49, 175 (1997).
[CrossRef]

Opt. Eng. (1)

M. J. Soileau, W. E. Williams, and E. W. Van Stryland, Opt. Eng. 28, 1133 (1989).
[CrossRef]

Opt. Express (2)

Proc. SPIE (1)

S. Laux, H. Bernitzki, M. Klaus, H. Lauth, and N. Kaiser, Proc. SPIE 4347, 13 (2001).
[CrossRef]

Other (2)

Lasers and laser-related equipment—Determination of laser-induced damage threshold of optical surfaces—Parts 1 and 2, ISO 11254-1 and ISO 11254-2 (International Organization for Standardization, Geneva, Switzerland, 2001).

J. Menapace, J. Peterson, M. Penetrante, and P. Miller, ‘‘Combined advanced finishing and UV laser conditioning process for producing damage resistance optics,’’ U.S. Patent WO 02/098811 A1 (December 12, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup for laser damage testing.

Fig. 2
Fig. 2

(a) Laser damage probability after 1, 10, and 100 shots in silica bulk at 1064 and 355 nm . (b) Evolution of defect density deduced from the fit.

Fig. 3
Fig. 3

Evolution of precursor damage thresholds and densities for silica surface at 1064 and 355 nm .

Fig. 4
Fig. 4

Evolution of damage threshold versus shot number at 10 Hz for silica surface and bulk at 1064 and 355 nm .

Fig. 5
Fig. 5

Frequency effect on the laser damage probability after 10 subsequent shots.

Metrics