Abstract

A shift-and-add (SAA) method is used to restore atmospherically degraded images. The operation of the SAA method is simple, but the deconvolution method of SAA images remains to be developed, especially for extended objects. We propose to deconvolve a SAA image of an extended object by use of a self-deconvolving data reconstruction algorithm (SeDDaRA). Computer simulations show the effectiveness of the SeDDaRA to SAA images. It is also shown that use of the SAA method after each data frame is self-deconvolved leads to a better reconstruction.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H.T. Bates and F. M. Cady, Opt. Commun. 32, 365 (1980).
    [CrossRef]
  2. A. Labeyrie, Astron. Astrophys. 6, 85 (1970).
  3. E. K. Hege, in Diffraction-Limited Imaging with Very Large Telescopes, D. M. Alloin and J.-M. Mariotti, eds. (Kluwer, Dordrecht, The Netherlands, 1989), pp. 141–155.
  4. J. C. Christou, Exp. Astron. 2, 27 (1991).
    [CrossRef]
  5. S. Kuwamura, N. Baba, N. Miura, M. Noguchi, Y. Norimoto, and S. Isobe, in ESO Coference on High-Resolution Imaging by Interferometry II, J. M. Beckers and F. Merkle, eds. (European Southern Observatory, Garching, Germany, 1992), pp. 461–469.
  6. N. Baba, N. Miura, T. Sakurai, K. Ichimoto, D. Soltau, and P. Brandt, Sol. Phys. 188, 41 (1999).
    [CrossRef]
  7. N. Baba, S. Kuwamura, N. Miura, and Y. Norimoto, Opt. Lett. 20, 1175 (1995).
    [CrossRef] [PubMed]
  8. D. Tomono and T. Nishimura, Proc. SPIE 3019, 9 (1997).
    [CrossRef]
  9. N. Baba, S. Kuwamura, N. Miura, and Y. Norimoto, Opt. Lett. 21, 626 (1996).
    [CrossRef] [PubMed]
  10. N. Baba, Y. Norimoto, N. Miura, S. Cuevas, and A. Ruelas-Mayorga, Opt. Commun. 146, 74 (1998).
    [CrossRef]
  11. J. N. Caron, N. M. Namazi, R. L. Lucke, C. J. Rollins, and P. R. Lynn, Opt. Lett. 26, 1164 (2001).
    [CrossRef]
  12. J. N. Caron, N. M. Namazi, and C. J. Rollins, Appl. Opt. 32, 6884 (2002).
    [CrossRef]
  13. B. L. McGlamery, Proc. SPIE 74, 225 (1976).
    [CrossRef]
  14. J. Rosen and D. Abookasis, Opt. Lett. 29, 253 (2004).
    [CrossRef] [PubMed]

2004 (1)

2002 (1)

J. N. Caron, N. M. Namazi, and C. J. Rollins, Appl. Opt. 32, 6884 (2002).
[CrossRef]

2001 (1)

1999 (1)

N. Baba, N. Miura, T. Sakurai, K. Ichimoto, D. Soltau, and P. Brandt, Sol. Phys. 188, 41 (1999).
[CrossRef]

1998 (1)

N. Baba, Y. Norimoto, N. Miura, S. Cuevas, and A. Ruelas-Mayorga, Opt. Commun. 146, 74 (1998).
[CrossRef]

1997 (1)

D. Tomono and T. Nishimura, Proc. SPIE 3019, 9 (1997).
[CrossRef]

1996 (1)

1995 (1)

1991 (1)

J. C. Christou, Exp. Astron. 2, 27 (1991).
[CrossRef]

1980 (1)

R. H.T. Bates and F. M. Cady, Opt. Commun. 32, 365 (1980).
[CrossRef]

1976 (1)

B. L. McGlamery, Proc. SPIE 74, 225 (1976).
[CrossRef]

1970 (1)

A. Labeyrie, Astron. Astrophys. 6, 85 (1970).

Abookasis, D.

Baba, N.

N. Baba, N. Miura, T. Sakurai, K. Ichimoto, D. Soltau, and P. Brandt, Sol. Phys. 188, 41 (1999).
[CrossRef]

N. Baba, Y. Norimoto, N. Miura, S. Cuevas, and A. Ruelas-Mayorga, Opt. Commun. 146, 74 (1998).
[CrossRef]

N. Baba, S. Kuwamura, N. Miura, and Y. Norimoto, Opt. Lett. 21, 626 (1996).
[CrossRef] [PubMed]

N. Baba, S. Kuwamura, N. Miura, and Y. Norimoto, Opt. Lett. 20, 1175 (1995).
[CrossRef] [PubMed]

S. Kuwamura, N. Baba, N. Miura, M. Noguchi, Y. Norimoto, and S. Isobe, in ESO Coference on High-Resolution Imaging by Interferometry II, J. M. Beckers and F. Merkle, eds. (European Southern Observatory, Garching, Germany, 1992), pp. 461–469.

Bates, R. H.T.

R. H.T. Bates and F. M. Cady, Opt. Commun. 32, 365 (1980).
[CrossRef]

Brandt, P.

N. Baba, N. Miura, T. Sakurai, K. Ichimoto, D. Soltau, and P. Brandt, Sol. Phys. 188, 41 (1999).
[CrossRef]

Cady, F. M.

R. H.T. Bates and F. M. Cady, Opt. Commun. 32, 365 (1980).
[CrossRef]

Caron, J. N.

Christou, J. C.

J. C. Christou, Exp. Astron. 2, 27 (1991).
[CrossRef]

Cuevas, S.

N. Baba, Y. Norimoto, N. Miura, S. Cuevas, and A. Ruelas-Mayorga, Opt. Commun. 146, 74 (1998).
[CrossRef]

Hege, E. K.

E. K. Hege, in Diffraction-Limited Imaging with Very Large Telescopes, D. M. Alloin and J.-M. Mariotti, eds. (Kluwer, Dordrecht, The Netherlands, 1989), pp. 141–155.

Ichimoto, K.

N. Baba, N. Miura, T. Sakurai, K. Ichimoto, D. Soltau, and P. Brandt, Sol. Phys. 188, 41 (1999).
[CrossRef]

Isobe, S.

S. Kuwamura, N. Baba, N. Miura, M. Noguchi, Y. Norimoto, and S. Isobe, in ESO Coference on High-Resolution Imaging by Interferometry II, J. M. Beckers and F. Merkle, eds. (European Southern Observatory, Garching, Germany, 1992), pp. 461–469.

Kuwamura, S.

N. Baba, S. Kuwamura, N. Miura, and Y. Norimoto, Opt. Lett. 21, 626 (1996).
[CrossRef] [PubMed]

N. Baba, S. Kuwamura, N. Miura, and Y. Norimoto, Opt. Lett. 20, 1175 (1995).
[CrossRef] [PubMed]

S. Kuwamura, N. Baba, N. Miura, M. Noguchi, Y. Norimoto, and S. Isobe, in ESO Coference on High-Resolution Imaging by Interferometry II, J. M. Beckers and F. Merkle, eds. (European Southern Observatory, Garching, Germany, 1992), pp. 461–469.

Labeyrie, A.

A. Labeyrie, Astron. Astrophys. 6, 85 (1970).

Lucke, R. L.

Lynn, P. R.

McGlamery, B. L.

B. L. McGlamery, Proc. SPIE 74, 225 (1976).
[CrossRef]

Miura, N.

N. Baba, N. Miura, T. Sakurai, K. Ichimoto, D. Soltau, and P. Brandt, Sol. Phys. 188, 41 (1999).
[CrossRef]

N. Baba, Y. Norimoto, N. Miura, S. Cuevas, and A. Ruelas-Mayorga, Opt. Commun. 146, 74 (1998).
[CrossRef]

N. Baba, S. Kuwamura, N. Miura, and Y. Norimoto, Opt. Lett. 21, 626 (1996).
[CrossRef] [PubMed]

N. Baba, S. Kuwamura, N. Miura, and Y. Norimoto, Opt. Lett. 20, 1175 (1995).
[CrossRef] [PubMed]

S. Kuwamura, N. Baba, N. Miura, M. Noguchi, Y. Norimoto, and S. Isobe, in ESO Coference on High-Resolution Imaging by Interferometry II, J. M. Beckers and F. Merkle, eds. (European Southern Observatory, Garching, Germany, 1992), pp. 461–469.

Namazi, N. M.

Nishimura, T.

D. Tomono and T. Nishimura, Proc. SPIE 3019, 9 (1997).
[CrossRef]

Noguchi, M.

S. Kuwamura, N. Baba, N. Miura, M. Noguchi, Y. Norimoto, and S. Isobe, in ESO Coference on High-Resolution Imaging by Interferometry II, J. M. Beckers and F. Merkle, eds. (European Southern Observatory, Garching, Germany, 1992), pp. 461–469.

Norimoto, Y.

N. Baba, Y. Norimoto, N. Miura, S. Cuevas, and A. Ruelas-Mayorga, Opt. Commun. 146, 74 (1998).
[CrossRef]

N. Baba, S. Kuwamura, N. Miura, and Y. Norimoto, Opt. Lett. 21, 626 (1996).
[CrossRef] [PubMed]

N. Baba, S. Kuwamura, N. Miura, and Y. Norimoto, Opt. Lett. 20, 1175 (1995).
[CrossRef] [PubMed]

S. Kuwamura, N. Baba, N. Miura, M. Noguchi, Y. Norimoto, and S. Isobe, in ESO Coference on High-Resolution Imaging by Interferometry II, J. M. Beckers and F. Merkle, eds. (European Southern Observatory, Garching, Germany, 1992), pp. 461–469.

Rollins, C. J.

Rosen, J.

Ruelas-Mayorga, A.

N. Baba, Y. Norimoto, N. Miura, S. Cuevas, and A. Ruelas-Mayorga, Opt. Commun. 146, 74 (1998).
[CrossRef]

Sakurai, T.

N. Baba, N. Miura, T. Sakurai, K. Ichimoto, D. Soltau, and P. Brandt, Sol. Phys. 188, 41 (1999).
[CrossRef]

Soltau, D.

N. Baba, N. Miura, T. Sakurai, K. Ichimoto, D. Soltau, and P. Brandt, Sol. Phys. 188, 41 (1999).
[CrossRef]

Tomono, D.

D. Tomono and T. Nishimura, Proc. SPIE 3019, 9 (1997).
[CrossRef]

Appl. Opt. (1)

J. N. Caron, N. M. Namazi, and C. J. Rollins, Appl. Opt. 32, 6884 (2002).
[CrossRef]

Astron. Astrophys. (1)

A. Labeyrie, Astron. Astrophys. 6, 85 (1970).

Exp. Astron. (1)

J. C. Christou, Exp. Astron. 2, 27 (1991).
[CrossRef]

Opt. Commun. (2)

R. H.T. Bates and F. M. Cady, Opt. Commun. 32, 365 (1980).
[CrossRef]

N. Baba, Y. Norimoto, N. Miura, S. Cuevas, and A. Ruelas-Mayorga, Opt. Commun. 146, 74 (1998).
[CrossRef]

Opt. Lett. (4)

Proc. SPIE (2)

B. L. McGlamery, Proc. SPIE 74, 225 (1976).
[CrossRef]

D. Tomono and T. Nishimura, Proc. SPIE 3019, 9 (1997).
[CrossRef]

Sol. Phys. (1)

N. Baba, N. Miura, T. Sakurai, K. Ichimoto, D. Soltau, and P. Brandt, Sol. Phys. 188, 41 (1999).
[CrossRef]

Other (2)

S. Kuwamura, N. Baba, N. Miura, M. Noguchi, Y. Norimoto, and S. Isobe, in ESO Coference on High-Resolution Imaging by Interferometry II, J. M. Beckers and F. Merkle, eds. (European Southern Observatory, Garching, Germany, 1992), pp. 461–469.

E. K. Hege, in Diffraction-Limited Imaging with Very Large Telescopes, D. M. Alloin and J.-M. Mariotti, eds. (Kluwer, Dordrecht, The Netherlands, 1989), pp. 141–155.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Portion ( 80 × 80   pixels ) of a model object ( 256 × 256   pixels ) and the best-shot images for (b) SNR = 30 and (c) SNR = 20 . The rmse’s of these images are (b) 0.190 and (c) 0.192.

Fig. 2
Fig. 2

Blind-deconvolved SAA images for (a) SNR = 30 and (b) SNR = 20 . The rmse’s of these images are (a) 0.135 and (b) 0.141.

Fig. 3
Fig. 3

SAA images of PSFs ( 64 × 64   pixels ) (a) without shift, (b) with shifting vector determined by cross correlating each data frame with the reference image ( SNR = 30 ) , (c) with shifting vector determined by cross correlating each self-deconvolved data frame with the self-deconvolved reference image ( SNR = 30 ) , and (d) with peak tracking. The shifting errors calculated from Eq. (6) are (a) 3.70, (b) 2.75, and (c) 2.19.

Fig. 4
Fig. 4

(a) Self-deconvolved reference image ( 80 × 80   pixels ) and (b) one of the self-deconvolved data frames ( 100 × 100   pixels ) .

Fig. 5
Fig. 5

SAA images with shifting vector determined by cross correlating each self-deconvolved data frame with the self-deconvolved reference image for (a) SNR = 30 and (b) SNR = 20 . The rmse’s of these images are (a) 0.105 and (b) 0.119.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

RMSC = { x y i 2 ( x , y ) [ x y i ( x , y ) ] 2 } 1 2 x y i ( x , y ) .
g ( x , y ) = f ( x , y ) h ( x , y ) + n ( x , y ) ,
G ( u , v ) = F ( u , v ) H ( u , v ) + N ( u , v ) .
D ( u , v ) = H s * ( u , v ) H s ( u , v ) 2 + ε ,
H s ( u , v ) = K d Sm { G ( u , v ) N ( u , v ) α } ,
SE = i = 1 M [ ( x s i x p i ) 2 + ( y s i y p i ) 2 ] 1 2 M ,
g ( x , y ) = i = 1 M g i ( x x s i , y y s i ) .

Metrics