Abstract

We propose a simple and flexible multiwavelength Raman-fiber-laser-based long-distance remote-sensing scheme for simultaneous measurement of strain and temperature by use of fiber Bragg gratings. By combining two uniform fiber Bragg gratings with a tunable chirped fiber grating, we readily achieve simultaneous two-channel sensing probes with a high extinction ratio of more than 50dB over a 50-km distance. When strain and temperature are applied, lasing wavelength separation and shift occur, respectively, since the two uniform fiber Bragg gratings have identical material composition and different cladding diameters. This allows simultaneous measurement of strain and temperature for long-distance sensing applications of more than 50 km.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, Appl. Phys. Lett. 32, 647 (1978).
    [CrossRef]
  2. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
    [CrossRef]
  3. Y. G. Han, S. B. Lee, C. S. Kim, J. U. Kang, U. C. Paek, and Y. Chung, Opt. Express 11, 476 (2003).
    [CrossRef] [PubMed]
  4. L. Bjerkan, Appl. Opt. 39, 554 (2000).
    [CrossRef]
  5. Y. Nakajima, Y. Shindo, and T. Yoshikawa, in Proceedings of the 16th International Conference on Optical Fiber Sensors (Institute of Electronics, Information, and Communication Engineers, Tokyo, Japan, 2003), pp. 530–533.
  6. P.-C. Peng, H.-Y Tseng, and Sien Chi, IEEE Photonics Technol. Lett. 16, 575 (2004).
    [CrossRef]
  7. J. Kim, J. Bae, Y. G. Han, S. H. Kim, J. M. Jeong, and S. B. Lee, IEEE Photonics Technol. Lett. 16, 849 (2004).
    [CrossRef]
  8. M. S. Song, B. H. Lee, S. B. Lee, and S. S. Choi, Opt. Lett. 22, 790 (1997).
    [CrossRef] [PubMed]

2004 (2)

P.-C. Peng, H.-Y Tseng, and Sien Chi, IEEE Photonics Technol. Lett. 16, 575 (2004).
[CrossRef]

J. Kim, J. Bae, Y. G. Han, S. H. Kim, J. M. Jeong, and S. B. Lee, IEEE Photonics Technol. Lett. 16, 849 (2004).
[CrossRef]

2003 (1)

2000 (1)

1997 (2)

M. S. Song, B. H. Lee, S. B. Lee, and S. S. Choi, Opt. Lett. 22, 790 (1997).
[CrossRef] [PubMed]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

1978 (1)

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, Appl. Phys. Lett. 32, 647 (1978).
[CrossRef]

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

Bae, J.

J. Kim, J. Bae, Y. G. Han, S. H. Kim, J. M. Jeong, and S. B. Lee, IEEE Photonics Technol. Lett. 16, 849 (2004).
[CrossRef]

Bjerkan, L.

Chi, Sien

P.-C. Peng, H.-Y Tseng, and Sien Chi, IEEE Photonics Technol. Lett. 16, 575 (2004).
[CrossRef]

Choi, S. S.

Chung, Y.

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

Fujii, Y.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, Appl. Phys. Lett. 32, 647 (1978).
[CrossRef]

Han, Y. G.

J. Kim, J. Bae, Y. G. Han, S. H. Kim, J. M. Jeong, and S. B. Lee, IEEE Photonics Technol. Lett. 16, 849 (2004).
[CrossRef]

Y. G. Han, S. B. Lee, C. S. Kim, J. U. Kang, U. C. Paek, and Y. Chung, Opt. Express 11, 476 (2003).
[CrossRef] [PubMed]

Hill, K. O.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, Appl. Phys. Lett. 32, 647 (1978).
[CrossRef]

Jeong, J. M.

J. Kim, J. Bae, Y. G. Han, S. H. Kim, J. M. Jeong, and S. B. Lee, IEEE Photonics Technol. Lett. 16, 849 (2004).
[CrossRef]

Johnson, D. C.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, Appl. Phys. Lett. 32, 647 (1978).
[CrossRef]

Kang, J. U.

Kawasaki, B. S.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, Appl. Phys. Lett. 32, 647 (1978).
[CrossRef]

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

Kim, C. S.

Kim, J.

J. Kim, J. Bae, Y. G. Han, S. H. Kim, J. M. Jeong, and S. B. Lee, IEEE Photonics Technol. Lett. 16, 849 (2004).
[CrossRef]

Kim, S. H.

J. Kim, J. Bae, Y. G. Han, S. H. Kim, J. M. Jeong, and S. B. Lee, IEEE Photonics Technol. Lett. 16, 849 (2004).
[CrossRef]

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

Lee, B. H.

Lee, S. B.

Nakajima, Y.

Y. Nakajima, Y. Shindo, and T. Yoshikawa, in Proceedings of the 16th International Conference on Optical Fiber Sensors (Institute of Electronics, Information, and Communication Engineers, Tokyo, Japan, 2003), pp. 530–533.

Paek, U. C.

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

Peng, P.-C.

P.-C. Peng, H.-Y Tseng, and Sien Chi, IEEE Photonics Technol. Lett. 16, 575 (2004).
[CrossRef]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

Shindo, Y.

Y. Nakajima, Y. Shindo, and T. Yoshikawa, in Proceedings of the 16th International Conference on Optical Fiber Sensors (Institute of Electronics, Information, and Communication Engineers, Tokyo, Japan, 2003), pp. 530–533.

Song, M. S.

Tseng, H.-Y

P.-C. Peng, H.-Y Tseng, and Sien Chi, IEEE Photonics Technol. Lett. 16, 575 (2004).
[CrossRef]

Yoshikawa, T.

Y. Nakajima, Y. Shindo, and T. Yoshikawa, in Proceedings of the 16th International Conference on Optical Fiber Sensors (Institute of Electronics, Information, and Communication Engineers, Tokyo, Japan, 2003), pp. 530–533.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, Appl. Phys. Lett. 32, 647 (1978).
[CrossRef]

IEEE Photonics Technol. Lett. (2)

P.-C. Peng, H.-Y Tseng, and Sien Chi, IEEE Photonics Technol. Lett. 16, 575 (2004).
[CrossRef]

J. Kim, J. Bae, Y. G. Han, S. H. Kim, J. M. Jeong, and S. B. Lee, IEEE Photonics Technol. Lett. 16, 849 (2004).
[CrossRef]

J. Lightwave Technol. (1)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Other (1)

Y. Nakajima, Y. Shindo, and T. Yoshikawa, in Proceedings of the 16th International Conference on Optical Fiber Sensors (Institute of Electronics, Information, and Communication Engineers, Tokyo, Japan, 2003), pp. 530–533.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup for a multiwavelength Raman fiber laser based on two uniform FBGs with a different cladding diameter for long-distance, simultaneous measurement of strain and temperature.

Fig. 2
Fig. 2

(a) Measured reflection spectra of the tunable chirped FBG and (b) two uniform FBGs with different cladding diameters ( d ) (FBG1: d = 125 μ m , λ p 1 = 1553.28 nm ; FBG2: d = 100 μ m , λ p 2 = 1555.12 nm ).

Fig. 3
Fig. 3

Measured output spectrum of a two-channel Raman fiber laser. The extinction ratio is more than 50 dB .

Fig. 4
Fig. 4

Measured peak power variation with time. The peak fluctuation is less than 0.6 dB . Repeatedly scanned output spectra are shown in the inset.

Fig. 5
Fig. 5

(a) Measured Raman laser spectra, (b) lasing wavelength shifts, and (c) wavelength spacing change between the two channels with applied strain change ( Δ λ = λ 2 λ 2 ) . The wavelength spacing between the two channels is changed by the applied strain.

Fig. 6
Fig. 6

(a) Measured Raman laser spectra with the temperature change and (b) lasing wavelength shifts of the two channels as a function of the applied temperature.

Metrics