Abstract

We carried out a numerical study of the second mode transition in finite-sized, microstructured optical fibers (MOFs) for several values of the matrix refractive index. We determined a unique critical geometrical parameter for the second mode cutoff that is valid for all the matrix refractive indices studied. Finite size effects and extrapolated results for infinite structures are described. Using scaling laws, we provide a generalized phase diagram for solid-core MOFs that is valid for all refractive indices, including those of the promising chalcogenide MOFs.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. A. Birks, J. C. Knight, and P. St.J. Russell, Opt. Lett. 22, 961 (1997).
    [CrossRef] [PubMed]
  2. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983).
  3. D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed. (Academic, San Diego, Calif. 1991).
  4. B. T. Kuhlmey, R. C. McPhedran, and C. M. de Sterke, Opt. Lett. 27, 1684 (2002).
    [CrossRef]
  5. N. A. Mortensen, Opt. Express 10, 341 (2002).
    [CrossRef] [PubMed]
  6. F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, and D. Felbacq, Foundations of Photonic Crystal Fibres (Imperial College Press, London, 2005).
  7. T. M. Monro, Y. D. West, D. W. Hewak, N. G.R. Broderick, and D. J. Richardson, Electron. Lett. 36, 1998 (2000).
    [CrossRef]
  8. B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. Martijn de Sterke, and R. C. McPhedran, J. Opt. Soc. Am. B 10, 2331 (2002).
    [CrossRef]
  9. B. T. Kuhlmey, “Theoretical and numerical investigation of the physics of microstructured optical fibres,” Ph.D. dissertation (Université Aix-Marseille III and University of Sydney, 2003), http://www.physics.usyd.edu.au/?borisk/physics/thesis.pdf.
  10. B. T. Kuhlmey, R. C. McPhedran, C. M. de Sterke, P. A. Robinson, G. Renversez, and D. Maystre, Opt. Express 10, 1285 (2002).
    [CrossRef] [PubMed]
  11. A free implementation of the multipole method is available at http://www.physics.usyd.edu.au/cudos/mofsoftware/.
  12. T. A. Birks, D. M. Bird, T. D. Hedley, J. M. Pottage, and P. St.J. Russell, Opt. Express 12, 69 (2003).
    [CrossRef]

2003 (1)

2002 (4)

2000 (1)

T. M. Monro, Y. D. West, D. W. Hewak, N. G.R. Broderick, and D. J. Richardson, Electron. Lett. 36, 1998 (2000).
[CrossRef]

1997 (1)

Bird, D. M.

Birks, T. A.

Botten, L. C.

Broderick, N. G.R.

T. M. Monro, Y. D. West, D. W. Hewak, N. G.R. Broderick, and D. J. Richardson, Electron. Lett. 36, 1998 (2000).
[CrossRef]

de Sterke, C. M.

de Sterke, C. Martijn

Felbacq, D.

F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, and D. Felbacq, Foundations of Photonic Crystal Fibres (Imperial College Press, London, 2005).

Guenneau, S.

F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, and D. Felbacq, Foundations of Photonic Crystal Fibres (Imperial College Press, London, 2005).

Hedley, T. D.

Hewak, D. W.

T. M. Monro, Y. D. West, D. W. Hewak, N. G.R. Broderick, and D. J. Richardson, Electron. Lett. 36, 1998 (2000).
[CrossRef]

Knight, J. C.

Kuhlmey, B.

F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, and D. Felbacq, Foundations of Photonic Crystal Fibres (Imperial College Press, London, 2005).

Kuhlmey, B. T.

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983).

Marcuse, D.

D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed. (Academic, San Diego, Calif. 1991).

Maystre, D.

McPhedran, R. C.

Monro, T. M.

T. M. Monro, Y. D. West, D. W. Hewak, N. G.R. Broderick, and D. J. Richardson, Electron. Lett. 36, 1998 (2000).
[CrossRef]

Mortensen, N. A.

Nicolet, A.

F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, and D. Felbacq, Foundations of Photonic Crystal Fibres (Imperial College Press, London, 2005).

Pottage, J. M.

Renversez, G.

Richardson, D. J.

T. M. Monro, Y. D. West, D. W. Hewak, N. G.R. Broderick, and D. J. Richardson, Electron. Lett. 36, 1998 (2000).
[CrossRef]

Robinson, P. A.

Russell, P. St.J.

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983).

West, Y. D.

T. M. Monro, Y. D. West, D. W. Hewak, N. G.R. Broderick, and D. J. Richardson, Electron. Lett. 36, 1998 (2000).
[CrossRef]

White, T. P.

Zolla, F.

F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, and D. Felbacq, Foundations of Photonic Crystal Fibres (Imperial College Press, London, 2005).

Electron. Lett. (1)

T. M. Monro, Y. D. West, D. W. Hewak, N. G.R. Broderick, and D. J. Richardson, Electron. Lett. 36, 1998 (2000).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (3)

Opt. Lett. (2)

Other (5)

B. T. Kuhlmey, “Theoretical and numerical investigation of the physics of microstructured optical fibres,” Ph.D. dissertation (Université Aix-Marseille III and University of Sydney, 2003), http://www.physics.usyd.edu.au/?borisk/physics/thesis.pdf.

A free implementation of the multipole method is available at http://www.physics.usyd.edu.au/cudos/mofsoftware/.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983).

D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed. (Academic, San Diego, Calif. 1991).

F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, and D. Felbacq, Foundations of Photonic Crystal Fibres (Imperial College Press, London, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Q as a function of normalized wavelength λ Λ for eight d Λ ratios for a seven-ring MOF made from a high—index matrix ( n mat = 2.5 ) with Λ = 2.3 μ m . Thinner curves (left) are associated with the left-hand y scale (lowest d Λ and Q values); the thicker curves use the right-hand y scale.

Fig. 2
Fig. 2

Q as a function of λ Λ for d Λ = 0.42 (thinner curves) and for d Λ = 0.425 (thicker curves) for several values of N r .

Fig. 3
Fig. 3

Q min as a function of N r for three values of matrix index n mat for several close d Λ values.

Fig. 4
Fig. 4

Phase diagram for the second mode. The points correspond to the computed values of ( λ Λ ) S . M . for the three matrix indices for N r = 7 ; the thicker curves, to the fits. The thinner, solid curve is associated with the fit of the extrapolated results for N r computed for n mat = 2.5 . The shaded region is the approximate endlessly single-mode region valid for the three matrix indices for N r 7 . Lighter curves (right-hand scale) show the value of ν at cutoff for the same refractive indices as the corresponding darker curves.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Q = 2 [ log Im ( n eff ) ] [ log λ ] 2 ,
( λ Λ ) S . M . = ( λ Λ ) S . M . ( n mat 2 n i 2 n mat 2 n i 2 ) 1 2 .

Metrics