Abstract

We present an experimental technique that permits mechanical-noise-free, cavity-enhanced frequency measurements of an atomic transition and its hyperfine structure. We employ the 532-nm frequency-doubled output from a Nd:YAG laser and an iodine vapor cell. The cell is placed in a folded ring cavity (FRC) with counterpropagating pump and probe beams. The FRC is locked with the Pound–Drever–Hall technique. Mechanical noise is rejected by differencing the pump and probe signals. In addition, this differenced error signal provides a sensitive measure of differential nonlinearity within the FRC.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Cerez, A. Brillet, and C. N. Man-Pichot, IEEE Trans. Instrum. Meas. 29, 352 (1980).
    [CrossRef]
  2. M. W. Regehr, “Signal extraction and control for an interferometric gravitational wave detector,” Ph.D. dissertation (California Institute of Technology, Pasadena, Calif., 1994).
  3. J. Ye, L. Ma, and J. L. Hall, J. Opt. Soc. Am. B 15, 6 (1998).
    [CrossRef]
  4. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
    [CrossRef]
  5. T. D. Day, E. K. Gustafson, and R. L. Byer, IEEE J. Quantum Electron. 28, 4 (1992).
    [CrossRef]

1998

1992

T. D. Day, E. K. Gustafson, and R. L. Byer, IEEE J. Quantum Electron. 28, 4 (1992).
[CrossRef]

1983

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

1980

P. Cerez, A. Brillet, and C. N. Man-Pichot, IEEE Trans. Instrum. Meas. 29, 352 (1980).
[CrossRef]

Brillet, A.

P. Cerez, A. Brillet, and C. N. Man-Pichot, IEEE Trans. Instrum. Meas. 29, 352 (1980).
[CrossRef]

Byer, R. L.

T. D. Day, E. K. Gustafson, and R. L. Byer, IEEE J. Quantum Electron. 28, 4 (1992).
[CrossRef]

Cerez, P.

P. Cerez, A. Brillet, and C. N. Man-Pichot, IEEE Trans. Instrum. Meas. 29, 352 (1980).
[CrossRef]

Day, T. D.

T. D. Day, E. K. Gustafson, and R. L. Byer, IEEE J. Quantum Electron. 28, 4 (1992).
[CrossRef]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Gustafson, E. K.

T. D. Day, E. K. Gustafson, and R. L. Byer, IEEE J. Quantum Electron. 28, 4 (1992).
[CrossRef]

Hall, J. L.

J. Ye, L. Ma, and J. L. Hall, J. Opt. Soc. Am. B 15, 6 (1998).
[CrossRef]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Ma, L.

Man-Pichot, C. N.

P. Cerez, A. Brillet, and C. N. Man-Pichot, IEEE Trans. Instrum. Meas. 29, 352 (1980).
[CrossRef]

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Regehr, M. W.

M. W. Regehr, “Signal extraction and control for an interferometric gravitational wave detector,” Ph.D. dissertation (California Institute of Technology, Pasadena, Calif., 1994).

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Ye, J.

Appl. Phys. B

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

IEEE J. Quantum Electron.

T. D. Day, E. K. Gustafson, and R. L. Byer, IEEE J. Quantum Electron. 28, 4 (1992).
[CrossRef]

IEEE Trans. Instrum. Meas.

P. Cerez, A. Brillet, and C. N. Man-Pichot, IEEE Trans. Instrum. Meas. 29, 352 (1980).
[CrossRef]

J. Opt. Soc. Am. B

Other

M. W. Regehr, “Signal extraction and control for an interferometric gravitational wave detector,” Ph.D. dissertation (California Institute of Technology, Pasadena, Calif., 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic layout of the experiment: λ 2 , half-wave plate; OFR, optical Faraday rotator (optical isolator); EOM, electro-optic modulator; pd1–pd4, photodetectors; R, reflectivity.

Fig. 2
Fig. 2

Scanning FRC mirror PZT with the iodine cell removed: (a) transmitted pump and probe powers, (b) pump, and probe, and (c) difference PDH error signals.

Fig. 3
Fig. 3

Scanning FRC mirror PZT with iodine cell inserted: (a) pump transmitted powers with the laser frequency tuned both (i) off ( 6 GHz away) and (ii) on the center of the R(56)32-0 broadened atomic transition; (b) same for the probe; (c) associated demodulated rf difference signals.

Fig. 4
Fig. 4

FRC-locked, broad laser frequency scan ( 1.4 GHz ) across the R(56)32-0 broadened atomic resonance, showing the absorption profile for (a) pump power, (b) probe power, (c) associated error signals from demodulated pump–probe difference, and (d) enlargement of R(56)32-0 a 1 hyperfine resonance difference error signal. Traces in (c) and (d) are taken with a measurement bandwidth of 1 kHz .

Fig. 5
Fig. 5

Error signal spectra with FRC locked, showing (a)(i) pump-only error signal, (a)(ii) pump–probe subtraction canceling mechanical signal at 30 kHz , (b)(i) broadband mechanical-noise cancellation and frequency signal at 40 kHz , (b)(ii) electronic noise floor.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S δ ν c ( h ν 8 P in η ) 1 2 ( Hz Hz ) ,
ϕ shot = π F ( h ν 2 P in η ) 1 2 ( rad Hz ) .

Metrics