Abstract

A new structure is proposed for localizing electromagnetic waves and energies with a left-handed-medium (LHM) slab and a perfectly electrically conducting (PEC) plane. When a current source is placed in front of a perfectly matched LHM slab with negative permittivity ϵ0 and negative permeability μ0 and a PEC plane is placed at the image point, we show rigorously that all the electromagnetic waves are confined in a region between the source and the PEC plane, and the fields outside the region are completely zero. Such an energy-localization system would be useful in medical treatments that use concentrated optical and microwave energies. However, a perfectly matched LHM is unphysical and does not exist in nature. Hence we further study the loss and retardation effects of LHM on the energy localization. Numerical results are presented for the lossy LHM structure to demonstrate the energy localization.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968).
    [CrossRef]
  2. J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
    [CrossRef] [PubMed]
  3. T. J. Cui, Q. Cheng, W. B. Lu, Q. Jiang, and J. A. Kong, Phys. Rev. B 71, 045114 (2005).
    [CrossRef]
  4. N. Garcia and M. Nieto-Vesperinas, Phys. Rev. Lett. 88, 207403 (2002).
    [CrossRef]
  5. D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, Appl. Phys. Lett. 82, 1506 (2003).
    [CrossRef]
  6. N. Fang and X. Zhang, Appl. Phys. Lett. 82, 161 (2003).
    [CrossRef]
  7. R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).
    [CrossRef] [PubMed]
  8. D. Maystre and S. Enoch, J. Opt. Soc. Am. A 21, 122 (2004).
    [CrossRef]
  9. L. Chen, S. He, and L. Shen, Phys. Rev. Lett. 92, 107404 (2004).
    [CrossRef]

2005 (1)

T. J. Cui, Q. Cheng, W. B. Lu, Q. Jiang, and J. A. Kong, Phys. Rev. B 71, 045114 (2005).
[CrossRef]

2004 (2)

D. Maystre and S. Enoch, J. Opt. Soc. Am. A 21, 122 (2004).
[CrossRef]

L. Chen, S. He, and L. Shen, Phys. Rev. Lett. 92, 107404 (2004).
[CrossRef]

2003 (2)

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, Appl. Phys. Lett. 82, 1506 (2003).
[CrossRef]

N. Fang and X. Zhang, Appl. Phys. Lett. 82, 161 (2003).
[CrossRef]

2002 (1)

N. Garcia and M. Nieto-Vesperinas, Phys. Rev. Lett. 88, 207403 (2002).
[CrossRef]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).
[CrossRef] [PubMed]

2000 (1)

J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef] [PubMed]

1968 (1)

V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968).
[CrossRef]

Chen, L.

L. Chen, S. He, and L. Shen, Phys. Rev. Lett. 92, 107404 (2004).
[CrossRef]

Cheng, Q.

T. J. Cui, Q. Cheng, W. B. Lu, Q. Jiang, and J. A. Kong, Phys. Rev. B 71, 045114 (2005).
[CrossRef]

Cui, T. J.

T. J. Cui, Q. Cheng, W. B. Lu, Q. Jiang, and J. A. Kong, Phys. Rev. B 71, 045114 (2005).
[CrossRef]

Enoch, S.

Fang, N.

N. Fang and X. Zhang, Appl. Phys. Lett. 82, 161 (2003).
[CrossRef]

Garcia, N.

N. Garcia and M. Nieto-Vesperinas, Phys. Rev. Lett. 88, 207403 (2002).
[CrossRef]

He, S.

L. Chen, S. He, and L. Shen, Phys. Rev. Lett. 92, 107404 (2004).
[CrossRef]

Jiang, Q.

T. J. Cui, Q. Cheng, W. B. Lu, Q. Jiang, and J. A. Kong, Phys. Rev. B 71, 045114 (2005).
[CrossRef]

Kong, J. A.

T. J. Cui, Q. Cheng, W. B. Lu, Q. Jiang, and J. A. Kong, Phys. Rev. B 71, 045114 (2005).
[CrossRef]

Lu, W. B.

T. J. Cui, Q. Cheng, W. B. Lu, Q. Jiang, and J. A. Kong, Phys. Rev. B 71, 045114 (2005).
[CrossRef]

Maystre, D.

Nieto-Vesperinas, M.

N. Garcia and M. Nieto-Vesperinas, Phys. Rev. Lett. 88, 207403 (2002).
[CrossRef]

Pendry, J. B.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, Appl. Phys. Lett. 82, 1506 (2003).
[CrossRef]

J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef] [PubMed]

Ramakrishna, S. A.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, Appl. Phys. Lett. 82, 1506 (2003).
[CrossRef]

Rosenbluth, M.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, Appl. Phys. Lett. 82, 1506 (2003).
[CrossRef]

Schultz, S.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, Appl. Phys. Lett. 82, 1506 (2003).
[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).
[CrossRef] [PubMed]

Schurig, D.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, Appl. Phys. Lett. 82, 1506 (2003).
[CrossRef]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).
[CrossRef] [PubMed]

Shen, L.

L. Chen, S. He, and L. Shen, Phys. Rev. Lett. 92, 107404 (2004).
[CrossRef]

Smith, D. R.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, Appl. Phys. Lett. 82, 1506 (2003).
[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).
[CrossRef] [PubMed]

Veselago, V. G.

V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968).
[CrossRef]

Zhang, X.

N. Fang and X. Zhang, Appl. Phys. Lett. 82, 161 (2003).
[CrossRef]

Appl. Phys. Lett. (2)

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, Appl. Phys. Lett. 82, 1506 (2003).
[CrossRef]

N. Fang and X. Zhang, Appl. Phys. Lett. 82, 161 (2003).
[CrossRef]

J. Opt. Soc. Am. A (1)

Phys. Rev. B (1)

T. J. Cui, Q. Cheng, W. B. Lu, Q. Jiang, and J. A. Kong, Phys. Rev. B 71, 045114 (2005).
[CrossRef]

Phys. Rev. Lett. (3)

N. Garcia and M. Nieto-Vesperinas, Phys. Rev. Lett. 88, 207403 (2002).
[CrossRef]

J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef] [PubMed]

L. Chen, S. He, and L. Shen, Phys. Rev. Lett. 92, 107404 (2004).
[CrossRef]

Science (1)

R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).
[CrossRef] [PubMed]

Sov. Phys. Usp. (1)

V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Energy-localization system in which a linear source I is located in front of a LHM slab and a PEC plane is placed at the outer image point. Here regions 0 and 2 are free space.

Fig. 2
Fig. 2

Electric field distributions along the line y = 0 for different losses, where δ ϵ = δ μ = 0 : (a) propagating components, and (b) evanescent components.

Fig. 3
Fig. 3

Electric field distribution in the y o z plane, where δ ϵ = δ μ = 0 and γ ϵ = γ μ = 10 3 .

Fig. 4
Fig. 4

Electric field distribution along the line y = 0 for a realistic artificial LHM slab: (a) propagating components, and (b) evanescent components.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E 0 x = ω μ 0 I 4 π d k y k 0 z ( 1 + R ) exp ( i k 0 z z ) exp ( i k y y ) , z 0 ,
E 0 x = ω μ 0 I 4 π d k y k 0 z [ exp ( i k 0 z z ) + R exp ( i k 0 z z ) ] exp ( i k y y ) , 0 z < d 1 ,
A = exp [ i 2 ( k 0 z d 1 + k 1 z d 2 + k 2 z d 3 ) ] + R 12 exp { i 2 [ k 0 z d 1 + ( k 1 z + k 2 z ) d 2 ] } + R 01 exp { i 2 [ ( k 0 z + k 1 z ) d 1 + k 2 z d 2 ] } R 01 R 12 exp { i 2 [ ( k 0 z + k 1 z ) d 1 + k 2 z d 3 ] } ,
B = exp [ i 2 ( k 1 z d 1 + k 2 z d 2 ) ] R 12 exp [ i 2 ( k 1 z d 1 + k 2 z d 3 ) ] R 01 exp [ i 2 ( k 1 z d 2 + k 2 z d 3 ) ] + R 01 R 12 exp [ i 2 ( k 1 z + k 2 z ) d 2 ] ,
( 1 + μ r 1 ) 2 ( 1 μ r 1 2 ) exp ( 2 k y d 1 ) + ( 1 μ r 1 2 ) exp ( 6 k y d 1 ) ( 1 μ r 1 ) 2 exp ( 4 k y d 1 ) = 0 .
exp ( k y d ) 1 2 ( δ μ + i γ μ ) .
k y max 1 2 d ln ( δ μ + i γ μ ) 2 ,
ϵ r 1 ( ω ) = 1 ω e p 2 ω e o 2 ω 2 ω e o 2 + i γ ω ,
μ r 1 ( ω ) = 1 ω m p 2 ω m o 2 ω 2 ω m o 2 + i γ ω ,

Metrics