Abstract

We theoretically demonstrate that selective resonant excitation can be achieved in a dense collection of V-type three-level atoms by optimizing the pulse delay and peak intensity ratio of an applied phase-tailored ultrashort pulse pair. Near-dipole–dipole interaction plays an important role in the quantum control of selective excitations since it brings about an intrinsic frequency shift in the atomic resonance, which builds up various excitation pathways. As a consequence, we can control the quantum interference between various pathways by shaping the excitation pulse pair to steer the atomic excitation selectively toward a desired quantum state.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Blanchet, C. Nicole, M.-A. Bouchene, and B. Girard, Phys. Rev. Lett. 78, 2716 (1997).
    [CrossRef]
  2. N. Dudovich, B. Dayan, S. M.Gallagher Faeder, and Y. Silberberg, Phys. Rev. Lett. 86, 47 (2001).
    [CrossRef] [PubMed]
  3. D. Meshulach and Y. Silberberg, Nature 396, 239 (1998).
    [CrossRef]
  4. E. Tokunaga, A. Terasaki, and T. Kobayashi, Opt. Lett. 17, 1131 (1992).
    [CrossRef] [PubMed]
  5. P. Heberle, J. J. Baumberg, and K. Köhler, Phys. Rev. Lett. 75, 2598 (1995).
    [CrossRef] [PubMed]
  6. M. E. Crenshaw and C. M. Bowden, Phys. Rev. Lett. 69, 3475 (1992).
    [CrossRef] [PubMed]
  7. M. E. Crenshaw, M. Scalora, and C. M. Bowden, Phys. Rev. Lett. 68, 911 (1992).
    [CrossRef] [PubMed]
  8. A. S. Manka, J. P. Dowling, C. M. Bowden, and M. Fleischhauer, Phys. Rev. Lett. 73, 1789 (1994).
    [CrossRef] [PubMed]
  9. H. Zeng and H. Xu, Phys. Rev. A 69, 043803 (2004).
    [CrossRef]
  10. See, for example, R. L. Haupt and S. E. Haupt, Practical Genetic Algorithms (Wiley, New York, 1998).

2004 (1)

H. Zeng and H. Xu, Phys. Rev. A 69, 043803 (2004).
[CrossRef]

2001 (1)

N. Dudovich, B. Dayan, S. M.Gallagher Faeder, and Y. Silberberg, Phys. Rev. Lett. 86, 47 (2001).
[CrossRef] [PubMed]

1998 (1)

D. Meshulach and Y. Silberberg, Nature 396, 239 (1998).
[CrossRef]

1997 (1)

V. Blanchet, C. Nicole, M.-A. Bouchene, and B. Girard, Phys. Rev. Lett. 78, 2716 (1997).
[CrossRef]

1995 (1)

P. Heberle, J. J. Baumberg, and K. Köhler, Phys. Rev. Lett. 75, 2598 (1995).
[CrossRef] [PubMed]

1994 (1)

A. S. Manka, J. P. Dowling, C. M. Bowden, and M. Fleischhauer, Phys. Rev. Lett. 73, 1789 (1994).
[CrossRef] [PubMed]

1992 (3)

E. Tokunaga, A. Terasaki, and T. Kobayashi, Opt. Lett. 17, 1131 (1992).
[CrossRef] [PubMed]

M. E. Crenshaw and C. M. Bowden, Phys. Rev. Lett. 69, 3475 (1992).
[CrossRef] [PubMed]

M. E. Crenshaw, M. Scalora, and C. M. Bowden, Phys. Rev. Lett. 68, 911 (1992).
[CrossRef] [PubMed]

Baumberg, J. J.

P. Heberle, J. J. Baumberg, and K. Köhler, Phys. Rev. Lett. 75, 2598 (1995).
[CrossRef] [PubMed]

Blanchet, V.

V. Blanchet, C. Nicole, M.-A. Bouchene, and B. Girard, Phys. Rev. Lett. 78, 2716 (1997).
[CrossRef]

Bouchene, M.-A.

V. Blanchet, C. Nicole, M.-A. Bouchene, and B. Girard, Phys. Rev. Lett. 78, 2716 (1997).
[CrossRef]

Bowden, C. M.

A. S. Manka, J. P. Dowling, C. M. Bowden, and M. Fleischhauer, Phys. Rev. Lett. 73, 1789 (1994).
[CrossRef] [PubMed]

M. E. Crenshaw and C. M. Bowden, Phys. Rev. Lett. 69, 3475 (1992).
[CrossRef] [PubMed]

M. E. Crenshaw, M. Scalora, and C. M. Bowden, Phys. Rev. Lett. 68, 911 (1992).
[CrossRef] [PubMed]

Crenshaw, M. E.

M. E. Crenshaw, M. Scalora, and C. M. Bowden, Phys. Rev. Lett. 68, 911 (1992).
[CrossRef] [PubMed]

M. E. Crenshaw and C. M. Bowden, Phys. Rev. Lett. 69, 3475 (1992).
[CrossRef] [PubMed]

Dayan, B.

N. Dudovich, B. Dayan, S. M.Gallagher Faeder, and Y. Silberberg, Phys. Rev. Lett. 86, 47 (2001).
[CrossRef] [PubMed]

Dowling, J. P.

A. S. Manka, J. P. Dowling, C. M. Bowden, and M. Fleischhauer, Phys. Rev. Lett. 73, 1789 (1994).
[CrossRef] [PubMed]

Dudovich, N.

N. Dudovich, B. Dayan, S. M.Gallagher Faeder, and Y. Silberberg, Phys. Rev. Lett. 86, 47 (2001).
[CrossRef] [PubMed]

Faeder, S. M.Gallagher

N. Dudovich, B. Dayan, S. M.Gallagher Faeder, and Y. Silberberg, Phys. Rev. Lett. 86, 47 (2001).
[CrossRef] [PubMed]

Fleischhauer, M.

A. S. Manka, J. P. Dowling, C. M. Bowden, and M. Fleischhauer, Phys. Rev. Lett. 73, 1789 (1994).
[CrossRef] [PubMed]

Girard, B.

V. Blanchet, C. Nicole, M.-A. Bouchene, and B. Girard, Phys. Rev. Lett. 78, 2716 (1997).
[CrossRef]

Haupt, R. L.

See, for example, R. L. Haupt and S. E. Haupt, Practical Genetic Algorithms (Wiley, New York, 1998).

Haupt, S. E.

See, for example, R. L. Haupt and S. E. Haupt, Practical Genetic Algorithms (Wiley, New York, 1998).

Heberle, P.

P. Heberle, J. J. Baumberg, and K. Köhler, Phys. Rev. Lett. 75, 2598 (1995).
[CrossRef] [PubMed]

Kobayashi, T.

Köhler, K.

P. Heberle, J. J. Baumberg, and K. Köhler, Phys. Rev. Lett. 75, 2598 (1995).
[CrossRef] [PubMed]

Manka, A. S.

A. S. Manka, J. P. Dowling, C. M. Bowden, and M. Fleischhauer, Phys. Rev. Lett. 73, 1789 (1994).
[CrossRef] [PubMed]

Meshulach, D.

D. Meshulach and Y. Silberberg, Nature 396, 239 (1998).
[CrossRef]

Nicole, C.

V. Blanchet, C. Nicole, M.-A. Bouchene, and B. Girard, Phys. Rev. Lett. 78, 2716 (1997).
[CrossRef]

Scalora, M.

M. E. Crenshaw, M. Scalora, and C. M. Bowden, Phys. Rev. Lett. 68, 911 (1992).
[CrossRef] [PubMed]

Silberberg, Y.

N. Dudovich, B. Dayan, S. M.Gallagher Faeder, and Y. Silberberg, Phys. Rev. Lett. 86, 47 (2001).
[CrossRef] [PubMed]

D. Meshulach and Y. Silberberg, Nature 396, 239 (1998).
[CrossRef]

Terasaki, A.

Tokunaga, E.

Xu, H.

H. Zeng and H. Xu, Phys. Rev. A 69, 043803 (2004).
[CrossRef]

Zeng, H.

H. Zeng and H. Xu, Phys. Rev. A 69, 043803 (2004).
[CrossRef]

Nature (1)

D. Meshulach and Y. Silberberg, Nature 396, 239 (1998).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (1)

H. Zeng and H. Xu, Phys. Rev. A 69, 043803 (2004).
[CrossRef]

Phys. Rev. Lett. (6)

V. Blanchet, C. Nicole, M.-A. Bouchene, and B. Girard, Phys. Rev. Lett. 78, 2716 (1997).
[CrossRef]

N. Dudovich, B. Dayan, S. M.Gallagher Faeder, and Y. Silberberg, Phys. Rev. Lett. 86, 47 (2001).
[CrossRef] [PubMed]

P. Heberle, J. J. Baumberg, and K. Köhler, Phys. Rev. Lett. 75, 2598 (1995).
[CrossRef] [PubMed]

M. E. Crenshaw and C. M. Bowden, Phys. Rev. Lett. 69, 3475 (1992).
[CrossRef] [PubMed]

M. E. Crenshaw, M. Scalora, and C. M. Bowden, Phys. Rev. Lett. 68, 911 (1992).
[CrossRef] [PubMed]

A. S. Manka, J. P. Dowling, C. M. Bowden, and M. Fleischhauer, Phys. Rev. Lett. 73, 1789 (1994).
[CrossRef] [PubMed]

Other (1)

See, for example, R. L. Haupt and S. E. Haupt, Practical Genetic Algorithms (Wiley, New York, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Final population of 1 and 3 of a three-level indi vidual atom in an optically dense medium with ε ̃ = Ω ̃ = 10 , driven by a Gaussian-type pulse pair with the FWHM of 2 ( ln 2 τ ) 1 2 for each pulse. The driving pulse pair varies with (a), (b) the pulse delay scanned from 4.5 τ to 5.5 τ while the peak intensity ratio is fixed as 1:1 and with (c), (d) the peak intensity ratio scanned from 0.4:0.6 to 0.6:0.4 while the pulse delay is fixed as 5.0 τ .

Fig. 2
Fig. 2

Optimization of a pulse pair by a genetic algorithm: (a) ρ 33 averaged by evolutionary individuals as a function of generation number, (b) temporal shape of the optimized pulse pair with a pulse delay of 5.48 τ and a peak intensity ratio of 0.55:0.45, and (c)–(e) excitation dynamics.

Fig. 3
Fig. 3

Selective excitation achieved with an optimized pulse pair. The resonant excitation dynamics and the cor responding pulse shapes are depicted in (a)–(d) for Ω ̃ ε ̃ = 10 and (e)–(h) for Ω ̃ ε ̃ = 20 .

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ρ ̇ 11 = i Ω ̃ f ( ξ ) [ ( ρ 12 ρ 21 ) + ( ρ 13 ρ 31 ) ] ,
ρ ̇ 22 = i [ Ω ̃ f ( ξ ) ( ρ 21 ρ 12 ) + ε ̃ ρ 11 ( ρ 23 ρ 32 ) ] ,
ρ ̇ 33 = i [ Ω ̃ f ( ξ ) ( ρ 31 ρ 13 ) + ε ̃ ρ 11 ( ρ 32 ρ 23 ) ] ,
ρ ̇ 12 = i Ω ̃ f ( ξ ) [ ( ρ 11 ρ 22 ) ρ 32 ] + i Δ ̃ ρ 12 + i ε ̃ ρ 11 ( ρ 12 + ρ 13 ) i ε ̃ ρ 12 [ ρ 22 + ρ 33 + ( ρ 23 + ρ 32 ) ] ,
ρ ̇ 13 = i Ω ̃ f ( ξ ) [ ( ρ 11 ρ 33 ) ρ 23 ] + i Δ ̃ ρ 13 + i ε ̃ ρ 11 ( ρ 13 + ρ 12 ) i ε ̃ ρ 13 [ ρ 22 + ρ 33 + ( ρ 23 + ρ 32 ) ] ,
ρ ̇ 23 = i Ω ̃ f ( ξ ) ( ρ 21 ρ 13 ) + i ε ̃ ρ 11 ( ρ 22 ρ 33 ) ,

Metrics