Abstract

We present a simple modification of the traditional method of locking the laser frequency to the side of an atomic spectral line. We achieve first-order power insensitivity at arbitrary intensity and frequency and in this way eliminate one of the major drawbacks of the traditional method. A similar approach could also be used in locking a laser to a Fabry–Perot cavity.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, e.g., Y. Shevy, ed., Proc. SPIE 2378 (1995).
  2. J. Ye, S. Swartz, P. Junger, and J. L. Hall, Opt. Lett. 21, 1280 (1996).
    [CrossRef] [PubMed]
  3. K. B. MacAdam, A. Steinbach, and C. Wieman, Am. J. Phys. 60, 1098 (1992).
    [CrossRef]
  4. N. P. Robins, B. J. J. Slagmolen, D. A. Shaddock, J. D. Close, and M. B. Gray, Opt. Lett. 27, 1905 (2002).
    [CrossRef]
  5. K. L. Corwin, Z. T. Lu, C. F. Hand, R. J. Epstein, and C. A. Wieman, Appl. Opt. 37, 3295 (1998).
    [CrossRef]
  6. G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, Appl. Phys. B 75, 613 (2002).
    [CrossRef]
  7. T. W. Hänsch, in Nonlinear Spectroscopy, N. Bloembergen, ed., Vol. 64 of Proceedings of the International School of Physics Enrico Fermi (IOS Press, Amsterdam, 1977), p. 17.
  8. V. S. Letokhov and V. P. Chebotayev, Nonlinear Laser Spectroscopy (Springer-Verlag, Berlin, 1977).
  9. K. B. Im, H. Y. Jung, C. H. Oh, S. H. Song, and P. S. Kim, Phys. Rev. A 63, 034501 (2001).
    [CrossRef]
  10. D. A. Smith and I. G. Hughes, Am. J. Phys. 72, 631 (2004).
    [CrossRef]
  11. R. W. Fox, L. D’Evelyn, H. G. Robinson, C. S. Weimer, and L. Hollberg, Proc. SPIE 2378, 58 (1995).
    [CrossRef]

2004 (1)

D. A. Smith and I. G. Hughes, Am. J. Phys. 72, 631 (2004).
[CrossRef]

2002 (2)

G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, Appl. Phys. B 75, 613 (2002).
[CrossRef]

N. P. Robins, B. J. J. Slagmolen, D. A. Shaddock, J. D. Close, and M. B. Gray, Opt. Lett. 27, 1905 (2002).
[CrossRef]

2001 (1)

K. B. Im, H. Y. Jung, C. H. Oh, S. H. Song, and P. S. Kim, Phys. Rev. A 63, 034501 (2001).
[CrossRef]

1998 (1)

1996 (1)

1995 (2)

R. W. Fox, L. D’Evelyn, H. G. Robinson, C. S. Weimer, and L. Hollberg, Proc. SPIE 2378, 58 (1995).
[CrossRef]

See, e.g., Y. Shevy, ed., Proc. SPIE 2378 (1995).

1992 (1)

K. B. MacAdam, A. Steinbach, and C. Wieman, Am. J. Phys. 60, 1098 (1992).
[CrossRef]

Chebotayev, V. P.

V. S. Letokhov and V. P. Chebotayev, Nonlinear Laser Spectroscopy (Springer-Verlag, Berlin, 1977).

Close, J. D.

Corwin, K. L.

D’Evelyn, L.

R. W. Fox, L. D’Evelyn, H. G. Robinson, C. S. Weimer, and L. Hollberg, Proc. SPIE 2378, 58 (1995).
[CrossRef]

Epstein, R. J.

Fox, R. W.

R. W. Fox, L. D’Evelyn, H. G. Robinson, C. S. Weimer, and L. Hollberg, Proc. SPIE 2378, 58 (1995).
[CrossRef]

Gawlik, W.

G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, Appl. Phys. B 75, 613 (2002).
[CrossRef]

Gray, M. B.

Hall, J. L.

Hand, C. F.

Hänsch, T. W.

T. W. Hänsch, in Nonlinear Spectroscopy, N. Bloembergen, ed., Vol. 64 of Proceedings of the International School of Physics Enrico Fermi (IOS Press, Amsterdam, 1977), p. 17.

Hollberg, L.

R. W. Fox, L. D’Evelyn, H. G. Robinson, C. S. Weimer, and L. Hollberg, Proc. SPIE 2378, 58 (1995).
[CrossRef]

Hughes, I. G.

D. A. Smith and I. G. Hughes, Am. J. Phys. 72, 631 (2004).
[CrossRef]

Im, K. B.

K. B. Im, H. Y. Jung, C. H. Oh, S. H. Song, and P. S. Kim, Phys. Rev. A 63, 034501 (2001).
[CrossRef]

Jung, H. Y.

K. B. Im, H. Y. Jung, C. H. Oh, S. H. Song, and P. S. Kim, Phys. Rev. A 63, 034501 (2001).
[CrossRef]

Junger, P.

Kim, P. S.

K. B. Im, H. Y. Jung, C. H. Oh, S. H. Song, and P. S. Kim, Phys. Rev. A 63, 034501 (2001).
[CrossRef]

Letokhov, V. S.

V. S. Letokhov and V. P. Chebotayev, Nonlinear Laser Spectroscopy (Springer-Verlag, Berlin, 1977).

Lu, Z. T.

MacAdam, K. B.

K. B. MacAdam, A. Steinbach, and C. Wieman, Am. J. Phys. 60, 1098 (1992).
[CrossRef]

Oh, C. H.

K. B. Im, H. Y. Jung, C. H. Oh, S. H. Song, and P. S. Kim, Phys. Rev. A 63, 034501 (2001).
[CrossRef]

Robins, N. P.

Robinson, H. G.

R. W. Fox, L. D’Evelyn, H. G. Robinson, C. S. Weimer, and L. Hollberg, Proc. SPIE 2378, 58 (1995).
[CrossRef]

Shaddock, D. A.

Shevy, Y.

See, e.g., Y. Shevy, ed., Proc. SPIE 2378 (1995).

Slagmolen, B. J. J.

Smith, D. A.

D. A. Smith and I. G. Hughes, Am. J. Phys. 72, 631 (2004).
[CrossRef]

Song, S. H.

K. B. Im, H. Y. Jung, C. H. Oh, S. H. Song, and P. S. Kim, Phys. Rev. A 63, 034501 (2001).
[CrossRef]

Steinbach, A.

K. B. MacAdam, A. Steinbach, and C. Wieman, Am. J. Phys. 60, 1098 (1992).
[CrossRef]

Swartz, S.

Wasik, G.

G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, Appl. Phys. B 75, 613 (2002).
[CrossRef]

Weimer, C. S.

R. W. Fox, L. D’Evelyn, H. G. Robinson, C. S. Weimer, and L. Hollberg, Proc. SPIE 2378, 58 (1995).
[CrossRef]

Wieman, C.

K. B. MacAdam, A. Steinbach, and C. Wieman, Am. J. Phys. 60, 1098 (1992).
[CrossRef]

Wieman, C. A.

Ye, J.

Zachorowski, J.

G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, Appl. Phys. B 75, 613 (2002).
[CrossRef]

Zawadzki, W.

G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, Appl. Phys. B 75, 613 (2002).
[CrossRef]

Am. J. Phys. (2)

K. B. MacAdam, A. Steinbach, and C. Wieman, Am. J. Phys. 60, 1098 (1992).
[CrossRef]

D. A. Smith and I. G. Hughes, Am. J. Phys. 72, 631 (2004).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, Appl. Phys. B 75, 613 (2002).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. A (1)

K. B. Im, H. Y. Jung, C. H. Oh, S. H. Song, and P. S. Kim, Phys. Rev. A 63, 034501 (2001).
[CrossRef]

Proc. SPIE (2)

R. W. Fox, L. D’Evelyn, H. G. Robinson, C. S. Weimer, and L. Hollberg, Proc. SPIE 2378, 58 (1995).
[CrossRef]

See, e.g., Y. Shevy, ed., Proc. SPIE 2378 (1995).

Other (2)

T. W. Hänsch, in Nonlinear Spectroscopy, N. Bloembergen, ed., Vol. 64 of Proceedings of the International School of Physics Enrico Fermi (IOS Press, Amsterdam, 1977), p. 17.

V. S. Letokhov and V. P. Chebotayev, Nonlinear Laser Spectroscopy (Springer-Verlag, Berlin, 1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup and servo electronics: PBS, polarizing beam splitter; BS, 50:50 beam splitter; HWP1, HWP2, half-wave plates; PD1, PD2, photodiodes; usp, saturated probe; usp, unsaturated probe. Other abbreviations defined in text.

Fig. 2
Fig. 2

Traditional FB case ( R = 1 , D C = 0.5 ) viewed at three different intensities. The lock point moves with respect to the center of the atomic line ( ω 0 ) . The frequency axis ( Δ = ω ω 0 ) is in units of natural linewidth γ. The vertical axis is in units of peak height at I = 1 I sat .

Fig. 3
Fig. 3

The lock point demonstrates insensitivity to power changes when R = 1.03 and D C = 0.36 . The frequency axis and vertical axis units are as in Fig. 2.

Fig. 4
Fig. 4

Frequency dependence on power for the two cases outlined in the text. TP, turning point as a function of input power. Data points, recorded experimental values; curves, from the model outlined in Eq. (1).

Tables (1)

Tables Icon

Table 1 Model and Experimental Parameters

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ES ( Δ , I , R , dc ) = PD 1 PD 2 + D C = k 1 ( S A + B G ) k 2 ( B G ) + D C = ( k 1 k 2 ) B G + k 1 S A + D C = k 1 [ ( 1 R ) B G + S A ] + D C ,

Metrics