Abstract

A data-processing technique is proposed for use with conventional frequency-chirped absorption spectroscopy to ensure accurate mapping of spectral features into time-domain signatures with arbitrarily fast readout chirp rates. This technique recovers the spectrum from a signal that is distorted owing to the fast chirp rate and therefore facilitates fast measurement of the spectral features over a broad spectral range with high resolution. Both numerical simulations and experimental results are presented.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. D. Merkel, R. K. Mohan, T. Chang, Z. Cole, A. Olson, and W. R. Babbitt, J. Lumin. 107, 62 (2004).
    [Crossref]
  2. C. M. Jefferson and A. J. Meixner, Chem. Phys. Lett. 189, 60 (1992).
    [Crossref]
  3. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford U. Press, Oxford, 1995).
  4. H. Lin, T. Wang, G. A. Wilson, and T. W. Mossberg, Opt. Lett. 15, 928 (1995).
    [Crossref]
  5. T. Chang, R. K. Mohan, M. Tian, T. L. Harris, Wm. R. Babbitt, and K. D. Merkel, Phys. Rev. A 70, 063803 (2004).
    [Crossref]
  6. F. Perdu, I. Lorgere, and J.-L. Le Gouet, Opt. Lett. 25, 669 (2000).
    [Crossref]
  7. L. Menager, I. Lorgere, J.-L. Le Gouet, D. Dolfi, and J.-P. Huignard, Opt. Lett. 26, 1245 (2001).
    [Crossref]
  8. T. Chang, M. Tian, Z. W. Barber, and W. R. Babbitt, J. Lumin. 107, 138 (2004).
    [Crossref]
  9. F. Schlottau and K. H. Wagner, J. Lumin. 107, 90 (2004).
    [Crossref]

2004 (4)

K. D. Merkel, R. K. Mohan, T. Chang, Z. Cole, A. Olson, and W. R. Babbitt, J. Lumin. 107, 62 (2004).
[Crossref]

T. Chang, R. K. Mohan, M. Tian, T. L. Harris, Wm. R. Babbitt, and K. D. Merkel, Phys. Rev. A 70, 063803 (2004).
[Crossref]

T. Chang, M. Tian, Z. W. Barber, and W. R. Babbitt, J. Lumin. 107, 138 (2004).
[Crossref]

F. Schlottau and K. H. Wagner, J. Lumin. 107, 90 (2004).
[Crossref]

2001 (1)

2000 (1)

1995 (1)

H. Lin, T. Wang, G. A. Wilson, and T. W. Mossberg, Opt. Lett. 15, 928 (1995).
[Crossref]

1992 (1)

C. M. Jefferson and A. J. Meixner, Chem. Phys. Lett. 189, 60 (1992).
[Crossref]

Babbitt, W. R.

K. D. Merkel, R. K. Mohan, T. Chang, Z. Cole, A. Olson, and W. R. Babbitt, J. Lumin. 107, 62 (2004).
[Crossref]

T. Chang, M. Tian, Z. W. Barber, and W. R. Babbitt, J. Lumin. 107, 138 (2004).
[Crossref]

Babbitt, Wm. R.

T. Chang, R. K. Mohan, M. Tian, T. L. Harris, Wm. R. Babbitt, and K. D. Merkel, Phys. Rev. A 70, 063803 (2004).
[Crossref]

Barber, Z. W.

T. Chang, M. Tian, Z. W. Barber, and W. R. Babbitt, J. Lumin. 107, 138 (2004).
[Crossref]

Chang, T.

T. Chang, M. Tian, Z. W. Barber, and W. R. Babbitt, J. Lumin. 107, 138 (2004).
[Crossref]

T. Chang, R. K. Mohan, M. Tian, T. L. Harris, Wm. R. Babbitt, and K. D. Merkel, Phys. Rev. A 70, 063803 (2004).
[Crossref]

K. D. Merkel, R. K. Mohan, T. Chang, Z. Cole, A. Olson, and W. R. Babbitt, J. Lumin. 107, 62 (2004).
[Crossref]

Cole, Z.

K. D. Merkel, R. K. Mohan, T. Chang, Z. Cole, A. Olson, and W. R. Babbitt, J. Lumin. 107, 62 (2004).
[Crossref]

Dolfi, D.

Harris, T. L.

T. Chang, R. K. Mohan, M. Tian, T. L. Harris, Wm. R. Babbitt, and K. D. Merkel, Phys. Rev. A 70, 063803 (2004).
[Crossref]

Huignard, J.-P.

Jefferson, C. M.

C. M. Jefferson and A. J. Meixner, Chem. Phys. Lett. 189, 60 (1992).
[Crossref]

Le Gouet, J.-L.

Lin, H.

H. Lin, T. Wang, G. A. Wilson, and T. W. Mossberg, Opt. Lett. 15, 928 (1995).
[Crossref]

Lorgere, I.

Meixner, A. J.

C. M. Jefferson and A. J. Meixner, Chem. Phys. Lett. 189, 60 (1992).
[Crossref]

Menager, L.

Merkel, K. D.

K. D. Merkel, R. K. Mohan, T. Chang, Z. Cole, A. Olson, and W. R. Babbitt, J. Lumin. 107, 62 (2004).
[Crossref]

T. Chang, R. K. Mohan, M. Tian, T. L. Harris, Wm. R. Babbitt, and K. D. Merkel, Phys. Rev. A 70, 063803 (2004).
[Crossref]

Mohan, R. K.

T. Chang, R. K. Mohan, M. Tian, T. L. Harris, Wm. R. Babbitt, and K. D. Merkel, Phys. Rev. A 70, 063803 (2004).
[Crossref]

K. D. Merkel, R. K. Mohan, T. Chang, Z. Cole, A. Olson, and W. R. Babbitt, J. Lumin. 107, 62 (2004).
[Crossref]

Mossberg, T. W.

H. Lin, T. Wang, G. A. Wilson, and T. W. Mossberg, Opt. Lett. 15, 928 (1995).
[Crossref]

Mukamel, S.

S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford U. Press, Oxford, 1995).

Olson, A.

K. D. Merkel, R. K. Mohan, T. Chang, Z. Cole, A. Olson, and W. R. Babbitt, J. Lumin. 107, 62 (2004).
[Crossref]

Perdu, F.

Schlottau, F.

F. Schlottau and K. H. Wagner, J. Lumin. 107, 90 (2004).
[Crossref]

Tian, M.

T. Chang, M. Tian, Z. W. Barber, and W. R. Babbitt, J. Lumin. 107, 138 (2004).
[Crossref]

T. Chang, R. K. Mohan, M. Tian, T. L. Harris, Wm. R. Babbitt, and K. D. Merkel, Phys. Rev. A 70, 063803 (2004).
[Crossref]

Wagner, K. H.

F. Schlottau and K. H. Wagner, J. Lumin. 107, 90 (2004).
[Crossref]

Wang, T.

H. Lin, T. Wang, G. A. Wilson, and T. W. Mossberg, Opt. Lett. 15, 928 (1995).
[Crossref]

Wilson, G. A.

H. Lin, T. Wang, G. A. Wilson, and T. W. Mossberg, Opt. Lett. 15, 928 (1995).
[Crossref]

Chem. Phys. Lett. (1)

C. M. Jefferson and A. J. Meixner, Chem. Phys. Lett. 189, 60 (1992).
[Crossref]

J. Lumin. (3)

T. Chang, M. Tian, Z. W. Barber, and W. R. Babbitt, J. Lumin. 107, 138 (2004).
[Crossref]

F. Schlottau and K. H. Wagner, J. Lumin. 107, 90 (2004).
[Crossref]

K. D. Merkel, R. K. Mohan, T. Chang, Z. Cole, A. Olson, and W. R. Babbitt, J. Lumin. 107, 62 (2004).
[Crossref]

Opt. Lett. (3)

Phys. Rev. A (1)

T. Chang, R. K. Mohan, M. Tian, T. L. Harris, Wm. R. Babbitt, and K. D. Merkel, Phys. Rev. A 70, 063803 (2004).
[Crossref]

Other (1)

S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford U. Press, Oxford, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Simulations of chirped readout ( κ = 1 MHz μ s ) of spectral holes of various widths. The normalized readout and recovered signals are plotted as a function of frequency for comparison with the normalized spectral hole. The recovery processing uses the readout data with a band width from 10 to 10 MHz. To show the details of the signal, the frequency scale in the plot is from 2.5 to 7.5 MHz.

Fig. 2
Fig. 2

Experimental demonstration: (a) schematic of the experimental setup. Readout and recovered signals with (b) κ = 0.2 and (c) κ = 1 MHz μ s .

Fig. 3
Fig. 3

Simulation of chirped readout of an arbitrary spectrum. (a) An arbitrary spectrum with finest feature δ v 0.1 MHz . (b) A readout signal with B = 10 MHz and κ = 1 MHz μ s . (c) The recovered spectrum.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E out ( t ) = E in ( t ) d z 0 γ ( τ ) exp [ i φ ( τ ) ] E in ( t τ ) d τ .
E c out ( t ) 2 = E 0 2 + A 0 γ ( τ ) cos [ 2 π κ t τ + ϕ l + ϕ q + φ ( τ ) ] d τ ,
S ( v ) = [ A γ ( v κ ) 2 κ ] exp { i [ 2 π v s v κ sgn ( v ) π v 2 κ + sgn ( v ) φ ( v κ ) ] } ,
S ( v ) = A [ γ ( v κ ) 2 κ ] exp [ i sgn ( v ) φ ( v κ ) ] .
S ( t ) = A 0 γ ( τ v ) cos [ 2 π τ v κ t + φ ( τ v ) ] d τ v = A α ( κ t ) ,

Metrics