Abstract

Accurate nondestructive refractive-index profiling is needed in the modeling, design, and manufacturing of optical fibers and fiber devices. Most profile measurement techniques cannot correctly characterize fibers with small or irregular refractive-index variations over their cross sections. Microinterferometric optical phase tomography (MIOPT) is a technique that allows measurement of fiber refractive-index profiles exhibiting such variations. We present the first demonstration, to our knowledge, of MIOPT. The profile of a polarization-maintaining fiber is measured by MIOPT and shown to be in agreement with (destructive) fiber end-face measurements. MIOPT is also applied to the limiting case of a symmetric single-mode fiber.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Dossou, S. LaRochelle, and M. Fontaine, J. Lightwave Technol. 20, 1463 (2002).
  2. E. Anemogiannis, E. N. Glytsis, and T. K. Gaylord, J. Lightwave Technol. 21, 218 (2003).
    [CrossRef]
  3. L. M. Boggs, H. M. Presby, and D. Marcuse, Bell Syst. Tech. J. 58, 867 (1979).
  4. B. L. Bachim and T. K. Gaylord, Appl. Opt. 44, 316 (2005).
    [CrossRef]
  5. S. T. Huntington, P. Mulvaney, A. Roberts, K. A. Nugent, and M. Bazylenko, J. Appl. Phys. 82, 2730 (1997).
    [CrossRef]
  6. D. A. Viskoe and G. W. Donohoe, IEEE Trans. Instrum. Meas. 45, 70 (1996).
  7. H. M. Presby, D. Marcuse, H. W. Astle, and L. M. Boggs, Bell Syst. Tech. J. 58, 883 (1979).
  8. Y. Park, S. Choi, U.-C. Paek, K. Oh, and D. Y. Kim, Appl. Opt. 42, 1182 (2003).
  9. W. Górski, Opt. Lasers Eng. 41, 563 (2004).

2005 (1)

2004 (1)

W. Górski, Opt. Lasers Eng. 41, 563 (2004).

2003 (2)

2002 (1)

1997 (1)

S. T. Huntington, P. Mulvaney, A. Roberts, K. A. Nugent, and M. Bazylenko, J. Appl. Phys. 82, 2730 (1997).
[CrossRef]

1996 (1)

D. A. Viskoe and G. W. Donohoe, IEEE Trans. Instrum. Meas. 45, 70 (1996).

1979 (2)

H. M. Presby, D. Marcuse, H. W. Astle, and L. M. Boggs, Bell Syst. Tech. J. 58, 883 (1979).

L. M. Boggs, H. M. Presby, and D. Marcuse, Bell Syst. Tech. J. 58, 867 (1979).

Anemogiannis, E.

Astle, H. W.

H. M. Presby, D. Marcuse, H. W. Astle, and L. M. Boggs, Bell Syst. Tech. J. 58, 883 (1979).

Bachim, B. L.

Bazylenko, M.

S. T. Huntington, P. Mulvaney, A. Roberts, K. A. Nugent, and M. Bazylenko, J. Appl. Phys. 82, 2730 (1997).
[CrossRef]

Boggs, L. M.

H. M. Presby, D. Marcuse, H. W. Astle, and L. M. Boggs, Bell Syst. Tech. J. 58, 883 (1979).

L. M. Boggs, H. M. Presby, and D. Marcuse, Bell Syst. Tech. J. 58, 867 (1979).

Choi, S.

Donohoe, G. W.

D. A. Viskoe and G. W. Donohoe, IEEE Trans. Instrum. Meas. 45, 70 (1996).

Dossou, K.

Fontaine, M.

Gaylord, T. K.

Glytsis, E. N.

Górski, W.

W. Górski, Opt. Lasers Eng. 41, 563 (2004).

Huntington, S. T.

S. T. Huntington, P. Mulvaney, A. Roberts, K. A. Nugent, and M. Bazylenko, J. Appl. Phys. 82, 2730 (1997).
[CrossRef]

Kim, D. Y.

LaRochelle, S.

Marcuse, D.

L. M. Boggs, H. M. Presby, and D. Marcuse, Bell Syst. Tech. J. 58, 867 (1979).

H. M. Presby, D. Marcuse, H. W. Astle, and L. M. Boggs, Bell Syst. Tech. J. 58, 883 (1979).

Mulvaney, P.

S. T. Huntington, P. Mulvaney, A. Roberts, K. A. Nugent, and M. Bazylenko, J. Appl. Phys. 82, 2730 (1997).
[CrossRef]

Nugent, K. A.

S. T. Huntington, P. Mulvaney, A. Roberts, K. A. Nugent, and M. Bazylenko, J. Appl. Phys. 82, 2730 (1997).
[CrossRef]

Oh, K.

Paek, U.-C.

Park, Y.

Presby, H. M.

H. M. Presby, D. Marcuse, H. W. Astle, and L. M. Boggs, Bell Syst. Tech. J. 58, 883 (1979).

L. M. Boggs, H. M. Presby, and D. Marcuse, Bell Syst. Tech. J. 58, 867 (1979).

Roberts, A.

S. T. Huntington, P. Mulvaney, A. Roberts, K. A. Nugent, and M. Bazylenko, J. Appl. Phys. 82, 2730 (1997).
[CrossRef]

Viskoe, D. A.

D. A. Viskoe and G. W. Donohoe, IEEE Trans. Instrum. Meas. 45, 70 (1996).

Appl. Opt. (2)

Bell Syst. Tech. J. (2)

L. M. Boggs, H. M. Presby, and D. Marcuse, Bell Syst. Tech. J. 58, 867 (1979).

H. M. Presby, D. Marcuse, H. W. Astle, and L. M. Boggs, Bell Syst. Tech. J. 58, 883 (1979).

IEEE Trans. Instrum. Meas. (1)

D. A. Viskoe and G. W. Donohoe, IEEE Trans. Instrum. Meas. 45, 70 (1996).

J. Appl. Phys. (1)

S. T. Huntington, P. Mulvaney, A. Roberts, K. A. Nugent, and M. Bazylenko, J. Appl. Phys. 82, 2730 (1997).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Lasers Eng. (1)

W. Górski, Opt. Lasers Eng. 41, 563 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Reconstructed relative refractive-index profile of a bow-tie-type PMF. (b) Dark-field reflected-light image of the PMF end face. Structural features present in both the reconstructed profile and the end-face image agree closely.

Fig. 2
Fig. 2

(a) Vertical line profile taken through the center of the reconstructed profile of the PMF [ n ( 0 , y ) n oil ] . (b) Horizontal line profile taken through the center of the reconstructed profile of the PMF [ n ( x , 0 ) n oil ] .

Fig. 3
Fig. 3

Reconstructed relative refractive-index profile of a SMF.

Fig. 4
Fig. 4

(a) Vertical line profile taken through the center of the reconstructed profile of the SMF [ n ( 0 , y ) n oil ] . (b) One-dimensional profile calculated with transverse interferometry, which assumes azimuthal symmetry.[3]

Metrics