Abstract

We report detailed measurements of the optical properties of tapered photonic crystal fibers (PCFs). We observe a striking long-wavelength loss as the fiber diameter is reduced, despite the minimal airhole collapse along the taper. We associate this loss with a transition of the fundamental core mode as the fiber dimensions contract: At wavelengths shorter than this transition wavelength, the core mode is strongly confined in the fiber microstructure, whereas at longer wavelengths the mode expands beyond the microstructure and couples out to higher-order modes. These experimental results are discussed in the context of the so-called fundamental mode cutoff described by Kuhlmey et al. [Opt. Express 10, 1285 (2002) ], which apply to PCFs with a finite microstructure.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Russell, Science 299, 358 (2003).
    [CrossRef] [PubMed]
  2. J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Liu, and C. Xu, IEEE Photonics Technol. Lett. 13, 52 (2001).
    [CrossRef]
  3. Y. K. Lize, E. C. Magi, V. G. Ta’eed, J. A. Bolger, P. Steinvurzel, and B. J. Eggleton, Opt. Express 12, 3209 (2004), http://www.opticsexpress.org.
    [CrossRef]
  4. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and M. W. Mason, Opt. Express 12, 2864 (2004), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  5. M. A. Foster and A. L. Gaeta, Opt. Express 12, 3137 (2004), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  6. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
    [CrossRef] [PubMed]
  7. B. T. Kuhlmey, R. C. McPhedran, C. M. de Sterke, P. A. Robinson, G. Renversez, and D. Maystre, Opt. Express 10, 1285 (2002), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  8. E. C. Magi, P. Steinvurzel, and B. J. Eggleton, J. Appl. Phys. 96, 3976 (2004).
    [CrossRef]
  9. T. A. Birks and Y. W. Li, J. Lightwave Technol. 10, 432 (1992).
    [CrossRef]
  10. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, IEE Proc. 138, 343 (1991).
  11. M. D. Nielsen and N. A. Mortensen, Opt. Express 11, 2762 (2003), http://www.opticsexpress.org.
    [CrossRef] [PubMed]

2004 (4)

2003 (3)

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef] [PubMed]

P. Russell, Science 299, 358 (2003).
[CrossRef] [PubMed]

M. D. Nielsen and N. A. Mortensen, Opt. Express 11, 2762 (2003), http://www.opticsexpress.org.
[CrossRef] [PubMed]

2002 (1)

2001 (1)

J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Liu, and C. Xu, IEEE Photonics Technol. Lett. 13, 52 (2001).
[CrossRef]

1992 (1)

T. A. Birks and Y. W. Li, J. Lightwave Technol. 10, 432 (1992).
[CrossRef]

1991 (1)

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, IEE Proc. 138, 343 (1991).

Ashcom, J. B.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef] [PubMed]

Birks, T. A.

Black, R. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, IEE Proc. 138, 343 (1991).

Bolger, J. A.

Chandalia, J. K.

J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Liu, and C. Xu, IEEE Photonics Technol. Lett. 13, 52 (2001).
[CrossRef]

de Sterke, C. M.

Eggleton, B. J.

Y. K. Lize, E. C. Magi, V. G. Ta’eed, J. A. Bolger, P. Steinvurzel, and B. J. Eggleton, Opt. Express 12, 3209 (2004), http://www.opticsexpress.org.
[CrossRef]

E. C. Magi, P. Steinvurzel, and B. J. Eggleton, J. Appl. Phys. 96, 3976 (2004).
[CrossRef]

J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Liu, and C. Xu, IEEE Photonics Technol. Lett. 13, 52 (2001).
[CrossRef]

Foster, M. A.

Gaeta, A. L.

Gattass, R. R.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef] [PubMed]

Gonthier, F.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, IEE Proc. 138, 343 (1991).

He, S. L.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef] [PubMed]

Henry, W. M.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, IEE Proc. 138, 343 (1991).

Kosinski, S. G.

J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Liu, and C. Xu, IEEE Photonics Technol. Lett. 13, 52 (2001).
[CrossRef]

Kuhlmey, B. T.

Lacroix, S.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, IEE Proc. 138, 343 (1991).

Leon-Saval, S. G.

Li, Y. W.

T. A. Birks and Y. W. Li, J. Lightwave Technol. 10, 432 (1992).
[CrossRef]

Liu, X.

J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Liu, and C. Xu, IEEE Photonics Technol. Lett. 13, 52 (2001).
[CrossRef]

Lize, Y. K.

Lou, J. Y.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef] [PubMed]

Love, J. D.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, IEE Proc. 138, 343 (1991).

Magi, E. C.

Mason, M. W.

Maxwell, I.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef] [PubMed]

Maystre, D.

Mazur, E.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef] [PubMed]

McPhedran, R. C.

Mortensen, N. A.

Nielsen, M. D.

Renversez, G.

Robinson, P. A.

Russell, P.

P. Russell, Science 299, 358 (2003).
[CrossRef] [PubMed]

Russell, P. St. J.

Shen, M. Y.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef] [PubMed]

Steinvurzel, P.

Stewart, W. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, IEE Proc. 138, 343 (1991).

Ta’eed, V. G.

Tong, L. M.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef] [PubMed]

Wadsworth, W. J.

Windeler, R. S.

J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Liu, and C. Xu, IEEE Photonics Technol. Lett. 13, 52 (2001).
[CrossRef]

Xu, C.

J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Liu, and C. Xu, IEEE Photonics Technol. Lett. 13, 52 (2001).
[CrossRef]

IEE Proc. (1)

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, IEE Proc. 138, 343 (1991).

IEEE Photonics Technol. Lett. (1)

J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Liu, and C. Xu, IEEE Photonics Technol. Lett. 13, 52 (2001).
[CrossRef]

J. Appl. Phys. (1)

E. C. Magi, P. Steinvurzel, and B. J. Eggleton, J. Appl. Phys. 96, 3976 (2004).
[CrossRef]

J. Lightwave Technol. (1)

T. A. Birks and Y. W. Li, J. Lightwave Technol. 10, 432 (1992).
[CrossRef]

Nature (1)

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef] [PubMed]

Opt. Express (5)

Science (1)

P. Russell, Science 299, 358 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the PCF being tapered in a brushing flame. The PCF is spliced between conventional high-numerical-aperture (HNA) and single-mode SMF-28 fibers that are coupled to a source and to an OSA. Insets, scanning-electron micrographs of the PCF cross section (a)–(c) before tapering and (d) at the taper waist.

Fig. 2
Fig. 2

Longitudinal profile of the taper’s outer diameter and the pitch inferred from transverse probing. Insets, transverse transmission spectra across different sections of the taper.

Fig. 3
Fig. 3

Evolution of the transmission spectrum through a LAF PCF as it is tapered and then index matched. The increase in transmission for λ > 1.2 μ m can be eliminated by an order-sorting filter.

Fig. 4
Fig. 4

Spectra of index-matched LAF PCF tapers of different diameters. The percentages indicate final-to-initial diameter ratio. Inset, λ t versus the minimum Λ of the tapers for both the LAF and the HAF fibers.

Fig. 5
Fig. 5

(a) Cross section of the simulated PCF taper: The field is launched at z = 0 , with symmetric boundary conditions at x = y = 0 . Field evolution of the core mode at (b) λ = 0.40 μ m and (c) λ = 1.55 μ m . (d) Modes found at the taper waist when λ = 1.55 μ m .

Fig. 6
Fig. 6

Comparison of the predicted (solid curve) and measured values of λ t Λ , where the circles and crosses are the individual and averaged values, respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d r d z r ( β core β FSM ) 2 π ,

Metrics