Abstract

We demonstrate an all-fiber, programmable, ultrafast optical delay line based on reversible frequency conversion by use of a time-prism pair. Using electro-optic phase modulators to provide the time-prism phase profile, we show a record scanning rate of 0.5 GHz and a delay range of 19.0 ps. Computer modeling suggests that aberration correction in the time-prism system can extend the delay range to 28.0 ps. Finally, limitations and potential improvement of our techniques are discussed.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Yang, D. Keusters, D. Goswami, and W. S. Warren, Opt. Lett. 23, 1843 (1998).
    [CrossRef]
  2. R. Piyaket, S. Hunter, J. E. Ford, and S. Esener, Appl. Opt. 34, 1445 (1995).
    [CrossRef] [PubMed]
  3. A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ung-arunyawee, and J. A. Izatt, Opt. Express 3, 219 (1998), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  4. G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, Opt. Lett. 22, 1811 (1997).
    [CrossRef]
  5. X. Liu, M. J. Cobb, and X. Li, Opt. Lett. 29, 80 (2004).
    [CrossRef] [PubMed]
  6. A. L. Oldenburg, J. J. Reynolds, D. L. Marks, and S. A. Boppart, Appl. Opt. 42, 4606 (2003).
    [CrossRef] [PubMed]
  7. L. A. Jiang, M. E. Grein, H. A. Haus, and E. P. Ippen, Opt. Lett. 28, 78 (2003).
    [CrossRef] [PubMed]
  8. I. Y. Poberezhskiy, B. J. Bortnik, S. Kim, and H. R. Fetterman, Opt. Lett. 28, 1570 (2003).
    [CrossRef] [PubMed]
  9. L. F. Mollenauer and C. Xu, presented at the Conference on Lasers and Electro-Optics, Long Beach, Calif., May 19–24, 2002.
  10. J. van Howe, J. Hansryd, and C. Xu, Opt. Lett. 29, 1470 (2004).
    [CrossRef] [PubMed]

2004 (2)

2003 (3)

1998 (2)

1997 (1)

1995 (1)

Boppart, S. A.

Bortnik, B. J.

Bouma, B. E.

Cobb, M. J.

Esener, S.

Fetterman, H. R.

Ford, J. E.

Fujimoto, J. G.

Goswami, D.

Grein, M. E.

Hansryd, J.

Haus, H. A.

Hunter, S.

Ippen, E. P.

Izatt, J. A.

Jiang, L. A.

Keusters, D.

Kim, S.

Kulkarni, M. D.

Li, X.

Liu, X.

Marks, D. L.

Mollenauer, L. F.

L. F. Mollenauer and C. Xu, presented at the Conference on Lasers and Electro-Optics, Long Beach, Calif., May 19–24, 2002.

Oldenburg, A. L.

Piyaket, R.

Poberezhskiy, I. Y.

Reynolds, J. J.

Rollins, A. M.

Tearney, G. J.

Ung-arunyawee, R.

van Howe, J.

Warren, W. S.

Xu, C.

J. van Howe, J. Hansryd, and C. Xu, Opt. Lett. 29, 1470 (2004).
[CrossRef] [PubMed]

L. F. Mollenauer and C. Xu, presented at the Conference on Lasers and Electro-Optics, Long Beach, Calif., May 19–24, 2002.

Yang, W.

Yazdanfar, S.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup. The pulsed source emits an 8.0-ps, 5-GHz pulse train generated by pulse carving and time-lens compression.10 The pulse train is precompensated and postcompensated (pre-comp and post-comp) by fiber spools with a dispersion value of 37.0 ps/nm each. The time prisms (phase modulators PM1 and PM2) are each driven by a 5-GHz sinusoid whose amplitude is modulated by the modulation input to the rf modulator. A dispersive delay of -74.0 ps/nm is used for generating the time delay. A schematic of a spatial prism pair is shown above to demonstrate the space–time analogy.

Fig. 2
Fig. 2

(a) Frequency shift (Δν) versus the applied dc modulation input. (b) Corresponding time delay (Δτ) at each frequency shift. Dashed lines were drawn to aid the eye.

Fig. 3
Fig. 3

(a) Oscilloscope time trace demonstrating the rapid scanning of the time delays. The dashed grid lines indicate the original pulse positions with no phase modulation. (b) Delay (Δτ) as a function of time obtained from (a). The solid curve shows the 0.5-GHz sinusoidal envelope function of the drive voltage into the phase modulators.

Fig. 4
Fig. 4

Optical spectra (a) of the original pulse train and (b) after frequency upshifting from the first time prism (PM1). The solid curve shows the measured spectrum, and the dashed curve shows the calculated spectrum. Resolution bandwidth on all the spectra is 0.01 nm.

Fig. 5
Fig. 5

(a) Optical spectra of delayed pulses after frequency downshifting from the second time prism (PM2) without correction (dashed curve) and the original spectrum (solid curve). (b) Calculated spectra in the case of aberration correction. The dashed curve shows the downshifted spectrum with the additional 15-GHz correction sinusoid. The solid curve shows the original spectrum. The resolution bandwidth of all the spectra is 0.01 nm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

φ=πV2Vπsin2πfmtπ2VVπfmt.
Δτ=ΔλD=πλ22cVVπfmD,
Δτ=ΔλDVVrf_mod,

Metrics