Abstract

We report on wide wavelength tuning through optical injection of carriers of a photonic resonance observed in reflectivity at 1543 nm in an InP-based two-dimensional photonic crystal slab. An 8-nm blueshift, which represents 20 times the resonance linewidth, is observed when a 4kW/cm2 intense optical pump is incident on the sample. An analytical model that we developed, based on a coupled-mode nonlinear approach, allows us to describe this phenomenon in detail.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
    [CrossRef] [PubMed]
  2. S. John, Phys. Rev. Lett. 58, 2486 (1987).
    [CrossRef] [PubMed]
  3. K. Busch and S. John, Phys. Rev. Lett. 83, 967 (1999).
    [CrossRef]
  4. H. M. H. Chong and R. M. De La Rue, IEEE Photon. Technol. Lett. 16, 1041 (2004).
    [CrossRef]
  5. J. Leclercq, B. Ben Bakir, H. Hattori, X. Letartre, P. Regreny, P. Rojo-Romeo, C. Seassal, and P. Viktorovitch, Proc. SPIE 5450, 300 (2004).
    [CrossRef]
  6. A. D. Bristow, J. P. R. Wells, W. H. Fan, A. M. Fox, M. S. Sckolnick, D. M. Whittaker, A. Tahraoui, T. F. Krauss, and J. S. Roberts, Appl. Phys. Lett. 83, 851 (2003).
    [CrossRef]
  7. F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovitch, Appl. Phys. Lett. 85, 1880 (2004).
    [CrossRef]
  8. T. Baba, M. Shiga, K. Inoshita, and F. Koyama, Electron. Lett. 39, 1516 (2003).
    [CrossRef]
  9. S. Fan, Appl. Phys. Lett. 80, 908 (2002).
    [CrossRef]
  10. J. M. Pottage, E. Silvestre, and P. St. J. Russell, J. Opt. Soc. Am. A 18, 442 (2001).
    [CrossRef]
  11. X. Letartre, J. Mouette, J. L. Leclercq, P. Rojo-Romeo, C. Seassal, and P. Viktorovitch, J. Lightwave Technol. 21, 1691 (2003).
    [CrossRef]
  12. One can justify this assumption by calculating, by use of the plane-wave expansion method, the wavelength shift of the photonic band as a result of a change of refractive index.?For our structure this variation is linear in a wavelength range greater than 60 nm.

2004

H. M. H. Chong and R. M. De La Rue, IEEE Photon. Technol. Lett. 16, 1041 (2004).
[CrossRef]

J. Leclercq, B. Ben Bakir, H. Hattori, X. Letartre, P. Regreny, P. Rojo-Romeo, C. Seassal, and P. Viktorovitch, Proc. SPIE 5450, 300 (2004).
[CrossRef]

F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovitch, Appl. Phys. Lett. 85, 1880 (2004).
[CrossRef]

2003

T. Baba, M. Shiga, K. Inoshita, and F. Koyama, Electron. Lett. 39, 1516 (2003).
[CrossRef]

A. D. Bristow, J. P. R. Wells, W. H. Fan, A. M. Fox, M. S. Sckolnick, D. M. Whittaker, A. Tahraoui, T. F. Krauss, and J. S. Roberts, Appl. Phys. Lett. 83, 851 (2003).
[CrossRef]

X. Letartre, J. Mouette, J. L. Leclercq, P. Rojo-Romeo, C. Seassal, and P. Viktorovitch, J. Lightwave Technol. 21, 1691 (2003).
[CrossRef]

2002

S. Fan, Appl. Phys. Lett. 80, 908 (2002).
[CrossRef]

2001

1999

K. Busch and S. John, Phys. Rev. Lett. 83, 967 (1999).
[CrossRef]

1987

E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[CrossRef] [PubMed]

S. John, Phys. Rev. Lett. 58, 2486 (1987).
[CrossRef] [PubMed]

Baba, T.

T. Baba, M. Shiga, K. Inoshita, and F. Koyama, Electron. Lett. 39, 1516 (2003).
[CrossRef]

Ben Bakir, B.

J. Leclercq, B. Ben Bakir, H. Hattori, X. Letartre, P. Regreny, P. Rojo-Romeo, C. Seassal, and P. Viktorovitch, Proc. SPIE 5450, 300 (2004).
[CrossRef]

Bristow, A. D.

A. D. Bristow, J. P. R. Wells, W. H. Fan, A. M. Fox, M. S. Sckolnick, D. M. Whittaker, A. Tahraoui, T. F. Krauss, and J. S. Roberts, Appl. Phys. Lett. 83, 851 (2003).
[CrossRef]

Busch, K.

K. Busch and S. John, Phys. Rev. Lett. 83, 967 (1999).
[CrossRef]

Chong, H. M. H.

H. M. H. Chong and R. M. De La Rue, IEEE Photon. Technol. Lett. 16, 1041 (2004).
[CrossRef]

Cojocaru, C.

F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovitch, Appl. Phys. Lett. 85, 1880 (2004).
[CrossRef]

De La Rue, R. M.

H. M. H. Chong and R. M. De La Rue, IEEE Photon. Technol. Lett. 16, 1041 (2004).
[CrossRef]

Fan, S.

S. Fan, Appl. Phys. Lett. 80, 908 (2002).
[CrossRef]

Fan, W. H.

A. D. Bristow, J. P. R. Wells, W. H. Fan, A. M. Fox, M. S. Sckolnick, D. M. Whittaker, A. Tahraoui, T. F. Krauss, and J. S. Roberts, Appl. Phys. Lett. 83, 851 (2003).
[CrossRef]

Fox, A. M.

A. D. Bristow, J. P. R. Wells, W. H. Fan, A. M. Fox, M. S. Sckolnick, D. M. Whittaker, A. Tahraoui, T. F. Krauss, and J. S. Roberts, Appl. Phys. Lett. 83, 851 (2003).
[CrossRef]

Hattori, H.

J. Leclercq, B. Ben Bakir, H. Hattori, X. Letartre, P. Regreny, P. Rojo-Romeo, C. Seassal, and P. Viktorovitch, Proc. SPIE 5450, 300 (2004).
[CrossRef]

Inoshita, K.

T. Baba, M. Shiga, K. Inoshita, and F. Koyama, Electron. Lett. 39, 1516 (2003).
[CrossRef]

John, S.

K. Busch and S. John, Phys. Rev. Lett. 83, 967 (1999).
[CrossRef]

S. John, Phys. Rev. Lett. 58, 2486 (1987).
[CrossRef] [PubMed]

Koyama, F.

T. Baba, M. Shiga, K. Inoshita, and F. Koyama, Electron. Lett. 39, 1516 (2003).
[CrossRef]

Krauss, T. F.

A. D. Bristow, J. P. R. Wells, W. H. Fan, A. M. Fox, M. S. Sckolnick, D. M. Whittaker, A. Tahraoui, T. F. Krauss, and J. S. Roberts, Appl. Phys. Lett. 83, 851 (2003).
[CrossRef]

Leclercq, J.

J. Leclercq, B. Ben Bakir, H. Hattori, X. Letartre, P. Regreny, P. Rojo-Romeo, C. Seassal, and P. Viktorovitch, Proc. SPIE 5450, 300 (2004).
[CrossRef]

Leclercq, J. L.

Letartre, X.

J. Leclercq, B. Ben Bakir, H. Hattori, X. Letartre, P. Regreny, P. Rojo-Romeo, C. Seassal, and P. Viktorovitch, Proc. SPIE 5450, 300 (2004).
[CrossRef]

F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovitch, Appl. Phys. Lett. 85, 1880 (2004).
[CrossRef]

X. Letartre, J. Mouette, J. L. Leclercq, P. Rojo-Romeo, C. Seassal, and P. Viktorovitch, J. Lightwave Technol. 21, 1691 (2003).
[CrossRef]

Levenson, A.

F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovitch, Appl. Phys. Lett. 85, 1880 (2004).
[CrossRef]

Monnier, P.

F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovitch, Appl. Phys. Lett. 85, 1880 (2004).
[CrossRef]

Mouette, J.

Pottage, J. M.

Raineri, F.

F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovitch, Appl. Phys. Lett. 85, 1880 (2004).
[CrossRef]

Raj, R.

F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovitch, Appl. Phys. Lett. 85, 1880 (2004).
[CrossRef]

Regreny, P.

J. Leclercq, B. Ben Bakir, H. Hattori, X. Letartre, P. Regreny, P. Rojo-Romeo, C. Seassal, and P. Viktorovitch, Proc. SPIE 5450, 300 (2004).
[CrossRef]

Roberts, J. S.

A. D. Bristow, J. P. R. Wells, W. H. Fan, A. M. Fox, M. S. Sckolnick, D. M. Whittaker, A. Tahraoui, T. F. Krauss, and J. S. Roberts, Appl. Phys. Lett. 83, 851 (2003).
[CrossRef]

Rojo-Romeo, P.

J. Leclercq, B. Ben Bakir, H. Hattori, X. Letartre, P. Regreny, P. Rojo-Romeo, C. Seassal, and P. Viktorovitch, Proc. SPIE 5450, 300 (2004).
[CrossRef]

X. Letartre, J. Mouette, J. L. Leclercq, P. Rojo-Romeo, C. Seassal, and P. Viktorovitch, J. Lightwave Technol. 21, 1691 (2003).
[CrossRef]

Russell, P. St. J.

Sckolnick, M. S.

A. D. Bristow, J. P. R. Wells, W. H. Fan, A. M. Fox, M. S. Sckolnick, D. M. Whittaker, A. Tahraoui, T. F. Krauss, and J. S. Roberts, Appl. Phys. Lett. 83, 851 (2003).
[CrossRef]

Seassal, C.

J. Leclercq, B. Ben Bakir, H. Hattori, X. Letartre, P. Regreny, P. Rojo-Romeo, C. Seassal, and P. Viktorovitch, Proc. SPIE 5450, 300 (2004).
[CrossRef]

F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovitch, Appl. Phys. Lett. 85, 1880 (2004).
[CrossRef]

X. Letartre, J. Mouette, J. L. Leclercq, P. Rojo-Romeo, C. Seassal, and P. Viktorovitch, J. Lightwave Technol. 21, 1691 (2003).
[CrossRef]

Shiga, M.

T. Baba, M. Shiga, K. Inoshita, and F. Koyama, Electron. Lett. 39, 1516 (2003).
[CrossRef]

Silvestre, E.

Tahraoui, A.

A. D. Bristow, J. P. R. Wells, W. H. Fan, A. M. Fox, M. S. Sckolnick, D. M. Whittaker, A. Tahraoui, T. F. Krauss, and J. S. Roberts, Appl. Phys. Lett. 83, 851 (2003).
[CrossRef]

Viktorovitch, P.

F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovitch, Appl. Phys. Lett. 85, 1880 (2004).
[CrossRef]

J. Leclercq, B. Ben Bakir, H. Hattori, X. Letartre, P. Regreny, P. Rojo-Romeo, C. Seassal, and P. Viktorovitch, Proc. SPIE 5450, 300 (2004).
[CrossRef]

X. Letartre, J. Mouette, J. L. Leclercq, P. Rojo-Romeo, C. Seassal, and P. Viktorovitch, J. Lightwave Technol. 21, 1691 (2003).
[CrossRef]

Wells, J. P. R.

A. D. Bristow, J. P. R. Wells, W. H. Fan, A. M. Fox, M. S. Sckolnick, D. M. Whittaker, A. Tahraoui, T. F. Krauss, and J. S. Roberts, Appl. Phys. Lett. 83, 851 (2003).
[CrossRef]

Whittaker, D. M.

A. D. Bristow, J. P. R. Wells, W. H. Fan, A. M. Fox, M. S. Sckolnick, D. M. Whittaker, A. Tahraoui, T. F. Krauss, and J. S. Roberts, Appl. Phys. Lett. 83, 851 (2003).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[CrossRef] [PubMed]

Appl. Phys. Lett.

A. D. Bristow, J. P. R. Wells, W. H. Fan, A. M. Fox, M. S. Sckolnick, D. M. Whittaker, A. Tahraoui, T. F. Krauss, and J. S. Roberts, Appl. Phys. Lett. 83, 851 (2003).
[CrossRef]

F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovitch, Appl. Phys. Lett. 85, 1880 (2004).
[CrossRef]

S. Fan, Appl. Phys. Lett. 80, 908 (2002).
[CrossRef]

Electron. Lett.

T. Baba, M. Shiga, K. Inoshita, and F. Koyama, Electron. Lett. 39, 1516 (2003).
[CrossRef]

IEEE Photon. Technol. Lett.

H. M. H. Chong and R. M. De La Rue, IEEE Photon. Technol. Lett. 16, 1041 (2004).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. A

Phys. Rev. Lett.

E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[CrossRef] [PubMed]

S. John, Phys. Rev. Lett. 58, 2486 (1987).
[CrossRef] [PubMed]

K. Busch and S. John, Phys. Rev. Lett. 83, 967 (1999).
[CrossRef]

Proc. SPIE

J. Leclercq, B. Ben Bakir, H. Hattori, X. Letartre, P. Regreny, P. Rojo-Romeo, C. Seassal, and P. Viktorovitch, Proc. SPIE 5450, 300 (2004).
[CrossRef]

Other

One can justify this assumption by calculating, by use of the plane-wave expansion method, the wavelength shift of the photonic band as a result of a change of refractive index.?For our structure this variation is linear in a wavelength range greater than 60 nm.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Photonic band structure of the graphite 2D PC. Inset, scanning electron micrograph of the fabricated sample.

Fig. 2
Fig. 2

(a) Experimental reflectivity spectra around the resonance wavelength for different pump intensities. The bold curve represents the linear reflectivity (Ipump=0). The thin spectra correspond to the probe reflectivity at pump intensities: a, 0.19 kW/cm2; b, 0.43 kW/cm2; c, 0.74 kW/cm2; d, 1.13 kW/cm2; e, 1.7 kW/cm2. All spectra are normalized to the maximum value of the linear reflectivity. (b) Calculated reflectivity spectra for the same pump intensities as in (a).

Fig. 3
Fig. 3

Nonlinear wavelength shift of the resonance with respect to its linear position as a function of the pump intensity. The squares correspond to the measurements and the solid curve to the predicted results. Inset, measured (squares) and calculated (solid curve) gain.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Tp=exp-iΦjIpump00expiΦjIpump,
Ti=12nj+1Ipump×nj+1Ipump+njIpumpnj+1Ipump-njIpumpnj+1Ipump-njIpumpnj+1Ipump+njIpump,
T2D=1+iΘIpump-iΘIpumpiΘIpump1-iΘIpump,
nIpump=nlin+nnlin=nlin+Δnnlin maxIpump/Isat/1+Ipump/Isat,
λ0nIpump=λ0lin+βnnlinIpump,
αIpump=αlin+α1λIpump-gmaxIpump-Istim/Ilaser-Istim,

Metrics