Abstract

We have developed a dual-channel optical coherence tomography–Indocyanine Green dye (OCT–ICG) fluorescence system based on a previously reported ophthalmic OCT confocal imaging system. The confocal channel is tuned to the fluorescence wavelength range of the ICG, and light from the same optical source is used to generate the OCT image and to excite the ICG fluorescence. The system enables the clinician to visualize simultaneously en face OCT slices and corresponding ICG angiograms of the ocular fundus, displayed side by side. C-scan (constant depth) and B-scan (cross section) images are collected by a fast en face scan (T scan). The pixel-to-pixel correspondence between the OCT and angiography images allows the user to capture OCT B scans precisely at selected points on the ICG confocal images.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Scheider and C. Schroedel, Am. J. Ophthalmol. 108, 458 (1989).
    [PubMed]
  2. L. A. Yanuzzi, R. W. Flower, and J. S. Slatker, eds., Indocyanine Green Angiography (Mosby, St. Louis, Mo., 1997).
  3. W. J. Geeraets and E. R. Berry, Am. J. Opththalmol. 66, 15 (1968).
  4. A. Gh. Podoleanu, G. M. Dobre, and D. A. Jackson, Opt. Lett. 23, 147 (1998).
    [CrossRef]
  5. A. Gh. Podoleanu, J. A. Rogers, and D. A. Jackson, Opt. Express 7, 292 (2000), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  6. J. P. Villeneuve, R. Huot, D. Marleau, and P. M. Huet, Am. J. Gastroenterol. 77, 233 (1982).
    [PubMed]

2000 (1)

1998 (1)

1989 (1)

A. Scheider and C. Schroedel, Am. J. Ophthalmol. 108, 458 (1989).
[PubMed]

1982 (1)

J. P. Villeneuve, R. Huot, D. Marleau, and P. M. Huet, Am. J. Gastroenterol. 77, 233 (1982).
[PubMed]

1968 (1)

W. J. Geeraets and E. R. Berry, Am. J. Opththalmol. 66, 15 (1968).

Berry, E. R.

W. J. Geeraets and E. R. Berry, Am. J. Opththalmol. 66, 15 (1968).

Dobre, G. M.

Geeraets, W. J.

W. J. Geeraets and E. R. Berry, Am. J. Opththalmol. 66, 15 (1968).

Huet, P. M.

J. P. Villeneuve, R. Huot, D. Marleau, and P. M. Huet, Am. J. Gastroenterol. 77, 233 (1982).
[PubMed]

Huot, R.

J. P. Villeneuve, R. Huot, D. Marleau, and P. M. Huet, Am. J. Gastroenterol. 77, 233 (1982).
[PubMed]

Jackson, D. A.

Marleau, D.

J. P. Villeneuve, R. Huot, D. Marleau, and P. M. Huet, Am. J. Gastroenterol. 77, 233 (1982).
[PubMed]

Podoleanu, A. Gh.

Rogers, J. A.

Scheider, A.

A. Scheider and C. Schroedel, Am. J. Ophthalmol. 108, 458 (1989).
[PubMed]

Schroedel, C.

A. Scheider and C. Schroedel, Am. J. Ophthalmol. 108, 458 (1989).
[PubMed]

Villeneuve, J. P.

J. P. Villeneuve, R. Huot, D. Marleau, and P. M. Huet, Am. J. Gastroenterol. 77, 233 (1982).
[PubMed]

Am. J. Gastroenterol. (1)

J. P. Villeneuve, R. Huot, D. Marleau, and P. M. Huet, Am. J. Gastroenterol. 77, 233 (1982).
[PubMed]

Am. J. Ophthalmol. (1)

A. Scheider and C. Schroedel, Am. J. Ophthalmol. 108, 458 (1989).
[PubMed]

Am. J. Opththalmol. (1)

W. J. Geeraets and E. R. Berry, Am. J. Opththalmol. 66, 15 (1968).

Opt. Express (1)

Opt. Lett. (1)

Other (1)

L. A. Yanuzzi, R. W. Flower, and J. S. Slatker, eds., Indocyanine Green Angiography (Mosby, St. Louis, Mo., 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

General setup of the combined OCT–ICG confocal system: MX, MY, galvanometer mirrors of the XY scanning pair.

Fig. 2
Fig. 2

Right, en face OCT and left, ICGF images of the eye’s fundus of a healthy volunteer in the postinjection phase at (a) 15 and (b) 20 s. Lateral size, 4 mm×4 mm; axial distance between OCT slices, 100 µm. The image at the left shows the earliest filling of the retinal arteries by the advancing fluid wave of ICGF. Its corresponding but higher-resolution C-scan OCT at the right reveals a slight tilt of the fundus in relation to the scanning plane such that the image appears to show a slightly distorted B-scanlike cross section. The upper dark region captures the vitreous above the undulating curvature of the foveal depression; the curved bright double line near the bottom of the image represents the retina–retinal pigmented epithelium complex with the choroid below. (b) The confocal image at the left now shows full filling of the retinal vessels and the choroidal background. The C-scan OCT at the right shows less tilt than but similar orientation to (a). The white T-bone-shaped structure represents the highly reflective vitreous–retinal-interface nerve fiber layer region that wraps around the dark disk at the left; the small dark central circle corresponds to a slice through the fovea’s dip at a level close to the base of the depression.

Fig. 3
Fig. 3

Right, en face OCT and left, ICGF images of the fundus of a patient with a choroidal neovascular membrane in the postinjection phase at (a) 10 and (b) 15 s. Lateral size, 4 mm×4 mm; axial distance between OCT slices, 200 µm. The image at the left shows full ICG filling of the retina and the choroidal vessels with a comma-shaped hyperfluorescent lesion within the central foveal dark zone that represents a neovascular membrane. The corresponding C-scan OCT at the right reveals a slight posterior tilt of the scan to the right such that the vitreous is represented by the black region on the left. The adjacent bright circular region with attached arms represents the vitreous–retinal-interface nerve fiber layer region. It surrounds a gray region of concentric circles, which corresponds to a serous elevation enveloping the neovascular complex. The double line of the retina–retinal pigmented epithelium interface is seen at the upper right. (b) Later in the ICG transit sequence the smaller vascular structures become less distinct. The C-scan OCT shows that the tilt has shifted in this pair such that the choroid is captured in the upper left corner and the vitreous is at the lower right. The larger apparent size and central location of the neovascular membrane in relation to the surrounding retinal structures places the depth of this cut somewhere near the mid-thickness of the retina.

Fig. 4
Fig. 4

Longitudinal OCT image of the fundus of a patient with a choroidal neovascular membrane.

Metrics