Abstract

We report the fabrication of artificial ommatidia, the imaging units of insects’ compound eyes, by use of polymer integrated optics. These biomimetic structures are obtained by configuring microlenses to play dual roles for self-writing of waveguides (during the fabrication) and collection of light (during the operation). The artificial ommatidium, consisting of a microlens, a spacer, and a waveguide, directly resembles the structure of its biological counterpart. Optical characterizations reveal single-peak angular sensitivity with a ±0.75° acceptance angle that is comparable to those found in nature. Using geometric and physical optics, we also investigate the relationship between angular sensitivity and the geometry of artificial ommatidia.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. F. Land, Annu. Rev. Entomol. 42, 147 (1997).
    [CrossRef]
  2. S. Ogata, J. Ishida, and T. Sasano, Opt. Eng. 33, 3649 (1994).
    [CrossRef]
  3. K. Hamanaka and H. Koshi, Opt. Rev. 3, 264 (1996).
    [CrossRef]
  4. J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, Appl. Opt. 40, 1806 (2001).
    [CrossRef]
  5. Y. Xia and G. M. Whitesides, Annu. Rev. Mater. Sci. 28, 153 (1998).
    [CrossRef]
  6. A. S. Kewitsch and A. Yariv, Opt. Lett. 21, 24 (1996).
    [CrossRef] [PubMed]
  7. U. Streppel, P. Dannberg, C. Wachter, A. Brauer, and R. Kowarschik, Appl. Opt. 42, 3570 (2003).
    [CrossRef] [PubMed]
  8. J. H. Park, Y.-K. Yoon, M. R. Prausnitz, and M. G. Allen, presented at 17th IEEE International Conference on Micro Electro Mechanical Systems, Maastricht, The Netherlands, January 25–29, 2004.
  9. D. G. Stavenga, J. Comp. Physiol. A 189, 1 (2003).
  10. Y. Li and E. Wolf, J. Opt. Soc. Am. A 1, 801 (1984).
    [CrossRef]
  11. D. G. Stavenga, J. Comp. Physiol. A 189, 189 (2003).

2003 (3)

U. Streppel, P. Dannberg, C. Wachter, A. Brauer, and R. Kowarschik, Appl. Opt. 42, 3570 (2003).
[CrossRef] [PubMed]

D. G. Stavenga, J. Comp. Physiol. A 189, 1 (2003).

D. G. Stavenga, J. Comp. Physiol. A 189, 189 (2003).

2001 (1)

1998 (1)

Y. Xia and G. M. Whitesides, Annu. Rev. Mater. Sci. 28, 153 (1998).
[CrossRef]

1997 (1)

M. F. Land, Annu. Rev. Entomol. 42, 147 (1997).
[CrossRef]

1996 (2)

1994 (1)

S. Ogata, J. Ishida, and T. Sasano, Opt. Eng. 33, 3649 (1994).
[CrossRef]

1984 (1)

Allen, M. G.

J. H. Park, Y.-K. Yoon, M. R. Prausnitz, and M. G. Allen, presented at 17th IEEE International Conference on Micro Electro Mechanical Systems, Maastricht, The Netherlands, January 25–29, 2004.

Brauer, A.

Dannberg, P.

Hamanaka, K.

K. Hamanaka and H. Koshi, Opt. Rev. 3, 264 (1996).
[CrossRef]

Ichioka, Y.

Ishida, J.

S. Ogata, J. Ishida, and T. Sasano, Opt. Eng. 33, 3649 (1994).
[CrossRef]

Ishida, K.

Kewitsch, A. S.

Kondou, N.

Koshi, H.

K. Hamanaka and H. Koshi, Opt. Rev. 3, 264 (1996).
[CrossRef]

Kowarschik, R.

Kumagai, T.

Land, M. F.

M. F. Land, Annu. Rev. Entomol. 42, 147 (1997).
[CrossRef]

Li, Y.

Miyatake, S.

Miyazaki, D.

Morimoto, T.

Ogata, S.

S. Ogata, J. Ishida, and T. Sasano, Opt. Eng. 33, 3649 (1994).
[CrossRef]

Park, J. H.

J. H. Park, Y.-K. Yoon, M. R. Prausnitz, and M. G. Allen, presented at 17th IEEE International Conference on Micro Electro Mechanical Systems, Maastricht, The Netherlands, January 25–29, 2004.

Prausnitz, M. R.

J. H. Park, Y.-K. Yoon, M. R. Prausnitz, and M. G. Allen, presented at 17th IEEE International Conference on Micro Electro Mechanical Systems, Maastricht, The Netherlands, January 25–29, 2004.

Sasano, T.

S. Ogata, J. Ishida, and T. Sasano, Opt. Eng. 33, 3649 (1994).
[CrossRef]

Stavenga, D. G.

D. G. Stavenga, J. Comp. Physiol. A 189, 1 (2003).

D. G. Stavenga, J. Comp. Physiol. A 189, 189 (2003).

Streppel, U.

Tanida, J.

Wachter, C.

Whitesides, G. M.

Y. Xia and G. M. Whitesides, Annu. Rev. Mater. Sci. 28, 153 (1998).
[CrossRef]

Wolf, E.

Xia, Y.

Y. Xia and G. M. Whitesides, Annu. Rev. Mater. Sci. 28, 153 (1998).
[CrossRef]

Yamada, K.

Yariv, A.

Yoon, Y.-K.

J. H. Park, Y.-K. Yoon, M. R. Prausnitz, and M. G. Allen, presented at 17th IEEE International Conference on Micro Electro Mechanical Systems, Maastricht, The Netherlands, January 25–29, 2004.

Annu. Rev. Entomol. (1)

M. F. Land, Annu. Rev. Entomol. 42, 147 (1997).
[CrossRef]

Annu. Rev. Mater. Sci. (1)

Y. Xia and G. M. Whitesides, Annu. Rev. Mater. Sci. 28, 153 (1998).
[CrossRef]

Appl. Opt. (2)

J. Comp. Physiol. A (2)

D. G. Stavenga, J. Comp. Physiol. A 189, 189 (2003).

D. G. Stavenga, J. Comp. Physiol. A 189, 1 (2003).

J. Opt. Soc. Am. A (1)

Opt. Eng. (1)

S. Ogata, J. Ishida, and T. Sasano, Opt. Eng. 33, 3649 (1994).
[CrossRef]

Opt. Lett. (1)

Opt. Rev. (1)

K. Hamanaka and H. Koshi, Opt. Rev. 3, 264 (1996).
[CrossRef]

Other (1)

J. H. Park, Y.-K. Yoon, M. R. Prausnitz, and M. G. Allen, presented at 17th IEEE International Conference on Micro Electro Mechanical Systems, Maastricht, The Netherlands, January 25–29, 2004.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic view of a biological ommatidium: An incoming beam is focused by the facet lens onto the tip of the rhabdomere by use of a crystal cone as a spacer. Any portion of light coupled into the waveguidelike structure of the rhabdomere is detected by photoreceptor cells and contributes to visual perception. Each ommatidium collects light impinging within a narrow range of FOV angles and independently contributes to form a mosaic image (inset, a compound eye, courtesy of the Biodidac Project). (b) Structure of our artificial ommatidium with a microlens and a self-written waveguide aligned with each other.

Fig. 2
Fig. 2

Microfabrication procedure: (a) An elastomer membrane with a microlens is attached to a layer of photopolymer upon a substrate (possibly a photodectector); (b) UV exposure of the photopolymer through the microlens first forms a conic structure with a higher refractive index; (c) when the UV intensity exceeds the threshold, self-writing of a waveguide is initiated near the focus. (d) SEM picture of an artificial ommatidium, showing the conic structure and the uniformly cylindrical waveguiding structure. Scale bar, 200 µm.

Fig. 3
Fig. 3

(a) Schematic view of the AS measurement setup. (b) SEM image of the waveguide portion of our artificial ommatidium. Scale bar, 100 µm. (c) Measured angular sensitivity.

Fig. 4
Fig. 4

To construct the theoretical AS curve (solid curve), we added the first four LP modes. The curve exhibits good agreement with the measurement results [filled circles; enlargement of the right-hand half of Fig. 3(c)] except for the peak near 0.75°. That discrepancy is attributed to the conic structure that functions as an aperture stop and suppresses the higher-order LP modes.

Tables (1)

Tables Icon

Table 1 Comparison of Biological and Artificial Ommatidia

Metrics