Abstract

A form of optical modulation at low pulse rates is reported in the case of surface plasmons excited by 1.55µm photons in a thin gold foil. Several visible-photon energies are shown to be pulsed by the action of the infrared pulses, the effect being maximized when each visible beam also excites surface plasmons. The infrared surface plasmons are implicated as the primary cause of thermally induced changes in the foil. The thermal effects dissipate in sufficiently small times so that operation up to the kilohertz range in pulse repetition frequency is obtained. Unlike direct photothermal phenomena, no phase change is necessary for the effect to be observed.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Ritchie, Phys. Rev. 106, 874 (1957).
    [CrossRef]
  2. T. L. Ferrell, T. A. Callcott, and R. J. Warmack, Am. Sci. 73, 344 (1985).
  3. E. Kretschmann, Z. Phys. 241, 313 (1971).
    [CrossRef]
  4. R. C. Reddick, R. J. Warmack, and T. L. Ferrell, Phys. Rev. B 39, 767 (1989).
    [CrossRef]
  5. A. Passian, A. Wig, A. L. Lereu, P. G. Evans, F. Meriaudeau, T. Thundat, and T. L. Ferrell, Ultramicroscopy 100, 429 (2004).
    [CrossRef] [PubMed]
  6. D. G. Bottrell and T. M. Casper, “Photon modulation, distribution, and amplification system,” U.S. patent6,587,252 (July1, 2003).

2004 (1)

A. Passian, A. Wig, A. L. Lereu, P. G. Evans, F. Meriaudeau, T. Thundat, and T. L. Ferrell, Ultramicroscopy 100, 429 (2004).
[CrossRef] [PubMed]

1989 (1)

R. C. Reddick, R. J. Warmack, and T. L. Ferrell, Phys. Rev. B 39, 767 (1989).
[CrossRef]

1985 (1)

T. L. Ferrell, T. A. Callcott, and R. J. Warmack, Am. Sci. 73, 344 (1985).

1971 (1)

E. Kretschmann, Z. Phys. 241, 313 (1971).
[CrossRef]

1957 (1)

R. H. Ritchie, Phys. Rev. 106, 874 (1957).
[CrossRef]

Bottrell, D. G.

D. G. Bottrell and T. M. Casper, “Photon modulation, distribution, and amplification system,” U.S. patent6,587,252 (July1, 2003).

Callcott, T. A.

T. L. Ferrell, T. A. Callcott, and R. J. Warmack, Am. Sci. 73, 344 (1985).

Casper, T. M.

D. G. Bottrell and T. M. Casper, “Photon modulation, distribution, and amplification system,” U.S. patent6,587,252 (July1, 2003).

Evans, P. G.

A. Passian, A. Wig, A. L. Lereu, P. G. Evans, F. Meriaudeau, T. Thundat, and T. L. Ferrell, Ultramicroscopy 100, 429 (2004).
[CrossRef] [PubMed]

Ferrell, T. L.

A. Passian, A. Wig, A. L. Lereu, P. G. Evans, F. Meriaudeau, T. Thundat, and T. L. Ferrell, Ultramicroscopy 100, 429 (2004).
[CrossRef] [PubMed]

R. C. Reddick, R. J. Warmack, and T. L. Ferrell, Phys. Rev. B 39, 767 (1989).
[CrossRef]

T. L. Ferrell, T. A. Callcott, and R. J. Warmack, Am. Sci. 73, 344 (1985).

Kretschmann, E.

E. Kretschmann, Z. Phys. 241, 313 (1971).
[CrossRef]

Lereu, A. L.

A. Passian, A. Wig, A. L. Lereu, P. G. Evans, F. Meriaudeau, T. Thundat, and T. L. Ferrell, Ultramicroscopy 100, 429 (2004).
[CrossRef] [PubMed]

Meriaudeau, F.

A. Passian, A. Wig, A. L. Lereu, P. G. Evans, F. Meriaudeau, T. Thundat, and T. L. Ferrell, Ultramicroscopy 100, 429 (2004).
[CrossRef] [PubMed]

Passian, A.

A. Passian, A. Wig, A. L. Lereu, P. G. Evans, F. Meriaudeau, T. Thundat, and T. L. Ferrell, Ultramicroscopy 100, 429 (2004).
[CrossRef] [PubMed]

Reddick, R. C.

R. C. Reddick, R. J. Warmack, and T. L. Ferrell, Phys. Rev. B 39, 767 (1989).
[CrossRef]

Ritchie, R. H.

R. H. Ritchie, Phys. Rev. 106, 874 (1957).
[CrossRef]

Thundat, T.

A. Passian, A. Wig, A. L. Lereu, P. G. Evans, F. Meriaudeau, T. Thundat, and T. L. Ferrell, Ultramicroscopy 100, 429 (2004).
[CrossRef] [PubMed]

Warmack, R. J.

R. C. Reddick, R. J. Warmack, and T. L. Ferrell, Phys. Rev. B 39, 767 (1989).
[CrossRef]

T. L. Ferrell, T. A. Callcott, and R. J. Warmack, Am. Sci. 73, 344 (1985).

Wig, A.

A. Passian, A. Wig, A. L. Lereu, P. G. Evans, F. Meriaudeau, T. Thundat, and T. L. Ferrell, Ultramicroscopy 100, 429 (2004).
[CrossRef] [PubMed]

Am. Sci. (1)

T. L. Ferrell, T. A. Callcott, and R. J. Warmack, Am. Sci. 73, 344 (1985).

Phys. Rev. (1)

R. H. Ritchie, Phys. Rev. 106, 874 (1957).
[CrossRef]

Phys. Rev. B (1)

R. C. Reddick, R. J. Warmack, and T. L. Ferrell, Phys. Rev. B 39, 767 (1989).
[CrossRef]

Ultramicroscopy (1)

A. Passian, A. Wig, A. L. Lereu, P. G. Evans, F. Meriaudeau, T. Thundat, and T. L. Ferrell, Ultramicroscopy 100, 429 (2004).
[CrossRef] [PubMed]

Z. Phys. (1)

E. Kretschmann, Z. Phys. 241, 313 (1971).
[CrossRef]

Other (1)

D. G. Bottrell and T. M. Casper, “Photon modulation, distribution, and amplification system,” U.S. patent6,587,252 (July1, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematics of the experimental arrangements for SPAC. The 29.5-nm-thick gold film (xy plane), vacuum evaporated on the side of a right-angled triangular quartz prism (index of refraction of n=1.46), supports plasmon excitation with optimized absorption for the information-encoded beam of wavelength λp=1550 nm. (a) Simultaneous excitation of the SPs at several visible-photon energies (λpri, i=1,2,) is modulated by the SP excitation due to the higher-power infrared photons λp. This modulation can be detected in all the reflected beams Rλpri i=1,2, in the case of p polarization and in all the reflected and transmitted beams Tλpri (i=1,2,) in the case of s polarization. (b) Left L portion of the spatially filtered infrared excitation beam incident at θ=43.6° with respect to the film’s normal zˆ is reflected from the opposite side of the prism back to the film plane, resulting in an overlapping incident region. The corresponding overlapping region at the surfaces of the film will sustain two counterpropagating SPs ±κ¯ that will interfere. The resulting fringes can be imaged with a PSTM. Modulation with SPAC is thus possible in this region.

Fig. 2
Fig. 2

SP-assisted spatial modulation of the reflected probe beam Rλpr1=442 nm. (a) 20-mW beam loses energy to the SPs in a 29.5-nm-thick gold foil to generate a 0.3 mW of reflected beam, which is recorded a few centimeters 8 cm from the exit face of the prism in the hv plane, a plane perpendicular to the direction of Rλpr1. The resonance conditions are subsequently modified by the excitation of SPs as a result of the infrared beam λp, as is evident from the sequence of profiles displayed in (b) and (c), which were recorded in the hv plane as a function of increasing power levels of λp as labeled. The vertical and horizontal line profiles are taken from the point of maximum intensity in the images. In (d) the measurement is repeated at a further distance (20 cm) from the exit face of the prism. During this process a 44% relative increase of the Rλpr1 beam power is measured, while the horizontal FWHM decreases initially from (a) 0.5 mm to (b) 150 µm, after which it increases to (c) 1 mm.

Fig. 3
Fig. 3

Proposed implementation of the high-frequency modulation. Standing SPs excited at λ=632.8 nm on a 55-nm-thick gold film as probed by the PSTM tip when scanned over a 3λ×3λ region. By analyzing the fast Fourier transform of the image, we confirm that no other periodicities are present and obtain a fringe separation of Δx=302 nm (λ/2n sin θ, where θ=46° is the peak resonance angle). Similar interference can be observed at λ=1550 nm on a 30-nm gold film. Modulating the infrared beam can thus accomplish a modulation in the visible probe beams.

Metrics