Abstract

We show high Raman gain in a silicon submicrometer-size planar waveguide. Using high-confinement structures and picosecond pump pulses, we show 3.1-dB net internal gain with 2.8-W peak pump power in a 7-mm-long waveguide. We also analyze experimentally and theoretically the effect of free-carrier absorption on the Raman gain.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Clap, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, Opt. Express 11, 1731 (2003), http://www.opticsexpress.org .
    [CrossRef]
  2. T. K. Liang and H. K. Tsang, in Conference on Lasers and Electro-Optics, International Quantum Electronics Conference, and Photonic Applications Systems Technologies Technical Digest on CD-ROM (Optical Society of America, Washington, D.C., 2004), paper CThT48.
  3. R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, Opt. Express 12, 2774 (2004), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  4. V. R. Almeida, R. R. Panepucci, and M. Lipson, Opt. Lett. 28, 1302 (2003).
    [CrossRef] [PubMed]
  5. C. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, IEE Proc. Optoelectron. 141, 281 (1994).
    [CrossRef]
  6. S. J. Spector, M. W. Geis, D. M. Lennon, R. C. Williamson, and T. M. Lyszczarz, in Integrated Photonics Research Topical Meetings on CD-ROM (Optical Society of America, Washington, D.C., 2004), paper ITHE5.
  7. T. K. Liang and H. K. Tsang, Appl. Phys. Lett. 84, 2745 (2004).
    [CrossRef]
  8. P. J. Delfyett, R. Dorsinville, and R. R. Alfana, Opt. Lett. 12, 1002 (1987).
    [CrossRef] [PubMed]
  9. M. Dinu, F. Quochi, and H. Garcia, Appl. Phys. Lett. 82, 2954 (2003).
    [CrossRef]

2004 (2)

2003 (3)

1994 (1)

C. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, IEE Proc. Optoelectron. 141, 281 (1994).
[CrossRef]

1987 (1)

Alfana, R. R.

Almeida, V. R.

Chaudhuri, S. K.

C. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, IEE Proc. Optoelectron. 141, 281 (1994).
[CrossRef]

Clap, R.

Claps, R.

Delfyett, P. J.

Dimitropoulos, D.

Dinu, M.

M. Dinu, F. Quochi, and H. Garcia, Appl. Phys. Lett. 82, 2954 (2003).
[CrossRef]

Dorsinville, R.

Garcia, H.

M. Dinu, F. Quochi, and H. Garcia, Appl. Phys. Lett. 82, 2954 (2003).
[CrossRef]

Geis, M. W.

S. J. Spector, M. W. Geis, D. M. Lennon, R. C. Williamson, and T. M. Lyszczarz, in Integrated Photonics Research Topical Meetings on CD-ROM (Optical Society of America, Washington, D.C., 2004), paper ITHE5.

Han, Y.

Huang, W. P.

C. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, IEE Proc. Optoelectron. 141, 281 (1994).
[CrossRef]

Jalali, B.

Lennon, D. M.

S. J. Spector, M. W. Geis, D. M. Lennon, R. C. Williamson, and T. M. Lyszczarz, in Integrated Photonics Research Topical Meetings on CD-ROM (Optical Society of America, Washington, D.C., 2004), paper ITHE5.

Liang, T. K.

T. K. Liang and H. K. Tsang, Appl. Phys. Lett. 84, 2745 (2004).
[CrossRef]

T. K. Liang and H. K. Tsang, in Conference on Lasers and Electro-Optics, International Quantum Electronics Conference, and Photonic Applications Systems Technologies Technical Digest on CD-ROM (Optical Society of America, Washington, D.C., 2004), paper CThT48.

Lipson, M.

Lyszczarz, T. M.

S. J. Spector, M. W. Geis, D. M. Lennon, R. C. Williamson, and T. M. Lyszczarz, in Integrated Photonics Research Topical Meetings on CD-ROM (Optical Society of America, Washington, D.C., 2004), paper ITHE5.

Panepucci, R. R.

Quochi, F.

M. Dinu, F. Quochi, and H. Garcia, Appl. Phys. Lett. 82, 2954 (2003).
[CrossRef]

Raghunathan, V.

Spector, S. J.

S. J. Spector, M. W. Geis, D. M. Lennon, R. C. Williamson, and T. M. Lyszczarz, in Integrated Photonics Research Topical Meetings on CD-ROM (Optical Society of America, Washington, D.C., 2004), paper ITHE5.

Stern, M. S.

C. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, IEE Proc. Optoelectron. 141, 281 (1994).
[CrossRef]

Tsang, H. K.

T. K. Liang and H. K. Tsang, Appl. Phys. Lett. 84, 2745 (2004).
[CrossRef]

T. K. Liang and H. K. Tsang, in Conference on Lasers and Electro-Optics, International Quantum Electronics Conference, and Photonic Applications Systems Technologies Technical Digest on CD-ROM (Optical Society of America, Washington, D.C., 2004), paper CThT48.

Williamson, R. C.

S. J. Spector, M. W. Geis, D. M. Lennon, R. C. Williamson, and T. M. Lyszczarz, in Integrated Photonics Research Topical Meetings on CD-ROM (Optical Society of America, Washington, D.C., 2004), paper ITHE5.

Xu, C. L.

C. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, IEE Proc. Optoelectron. 141, 281 (1994).
[CrossRef]

Appl. Phys. Lett. (2)

T. K. Liang and H. K. Tsang, Appl. Phys. Lett. 84, 2745 (2004).
[CrossRef]

M. Dinu, F. Quochi, and H. Garcia, Appl. Phys. Lett. 82, 2954 (2003).
[CrossRef]

IEE Proc. Optoelectron. (1)

C. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, IEE Proc. Optoelectron. 141, 281 (1994).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Other (2)

S. J. Spector, M. W. Geis, D. M. Lennon, R. C. Williamson, and T. M. Lyszczarz, in Integrated Photonics Research Topical Meetings on CD-ROM (Optical Society of America, Washington, D.C., 2004), paper ITHE5.

T. K. Liang and H. K. Tsang, in Conference on Lasers and Electro-Optics, International Quantum Electronics Conference, and Photonic Applications Systems Technologies Technical Digest on CD-ROM (Optical Society of America, Washington, D.C., 2004), paper CThT48.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Measurement-limited probe transmission waveform for the wavelengths of 1603.5 nm [solid curve in (a)] and 1605.4 nm [solid curve in (b)]. The dashed curves in (a) and (b) are the results of simulations. The inset in (a) shows the response of the detector to the pump pulse. (c) Relative transmission obtained by dividing curve I in (a) by curve II in (b).

Fig. 2
Fig. 2

Measurement-limited internal Raman gain (curve with circles), net internal gain (curve with diamonds), and FCA (curve with triangles) versus pump peak power.

Fig. 3
Fig. 3

Measurement-limited Raman gain spectrum. Squares correspond to the peak value of Raman gain extracted from the probe transmission. The solid curve corresponds to the fitted Lorentzian spectrum.

Fig. 4
Fig. 4

Gain dynamics obtained from simulation. (a) Normalized probe transmission when the Raman effect is present and when it is not present. (b) Raman gain obtained by dividing the solid curve in (a) by the dashed curve in (b).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

τR=λ02πcΔλ.
IPr,tz+cngPIPr,tz=-γPIPr,t-αPnr,tIPr,t-βIPr,t2-gRIPr,tISr,tωPωS,
ISr,tz+cngSISr,tz=-γSISr,t-αSnr,tISr,t-2βIPr,tISr,t+gRIPr,tISr,t,
IPr,t=-tIPr,t1τR exp-t-ττRdτ.

Metrics