Abstract

We analyze the transmission characteristics of a Sagnac loop interferometer containing a polarization-dependent loss element and lossless polarization-converting elements by use of Jones matrices. We show that polarization independence in the transmission mode can be achieved in such a configuration and that maximum transmittance occurs when a half-wave plate is used for the polarization-converting element. The result is verified experimentally for a fiber acousto-optic tunable filter and cascaded long-period fiber gratings with either intrinsic or process-induced polarization-dependent filtering characteristics.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. L. Bachim and T. K. Gaylord, Appl. Opt. 42, 6816 (2003).
    [CrossRef] [PubMed]
  2. J. Zhang, S. G. Guo, W. G. Jung, J. S. Nelson, and Z. P. Chen, Opt. Express 11, 3262 (2003), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  3. Q. Li, A. A. Au, C. H. Lin, I. V. Tomov, and H. P. Lee, IEEE Photon. Technol. Lett. 15, 718 (2003).
    [CrossRef]
  4. H. S. Kim, S. H. Yun, I. K. Hwang, and B. Y. Kim, Opt. Lett. 22, 1476 (1997).
    [CrossRef]
  5. B. Lee, J. Cheong, and U. C. Paek, Opt. Lett. 27, 1096 (2002).
    [CrossRef]
  6. S. T. Oh, W. T. Han, U. C. Paek, and Y. Chung, Opt. Express 11, 3087 (2003), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  7. S. Pereira, J. E. Sipe, R. E. Slusher, and S. Spalter, J. Opt. Soc. Am. B 19, 1509 (2002).
    [CrossRef]
  8. C. S. Kim, F. N. Farokhrooz, and J. U. Kang, Opt. Lett. 29, 1677 (2004).
    [CrossRef] [PubMed]
  9. A. Yu and A. S. Siddiqui, IEE Proc. Optoelectron. 141, 1 (1994).
    [CrossRef]
  10. Q. Li, X. Liu, J. Peng, B. Zhou, E. R. Lyons, and H. P. Lee, IEEE Photon. Technol. Lett. 14, 337 (2002).
    [CrossRef]
  11. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
    [CrossRef] [PubMed]
  12. X. Shu, L. Yu, D. Zhao, L. Zhang, K. Sugden, and I. Bennion, J. Opt. Soc. Am. B 19, 2770 (2002).
    [CrossRef]

2004 (1)

2003 (5)

2002 (4)

1997 (1)

1994 (1)

A. Yu and A. S. Siddiqui, IEE Proc. Optoelectron. 141, 1 (1994).
[CrossRef]

Armani, K.

K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

Au, A. A.

Q. Li, A. A. Au, C. H. Lin, I. V. Tomov, and H. P. Lee, IEEE Photon. Technol. Lett. 15, 718 (2003).
[CrossRef]

Bachim, B. L.

Bennion, I.

Chen, Z. P.

Cheong, J.

Chung, Y.

Farokhrooz, F. N.

Gaylord, T. K.

Guo, S. G.

Han, W. T.

Hwang, I. K.

Jung, W. G.

Kang, J. U.

Kim, B. Y.

Kim, C. S.

Kim, H. S.

Kippenberg, T. J.

K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

Lee, B.

Lee, H. P.

Q. Li, A. A. Au, C. H. Lin, I. V. Tomov, and H. P. Lee, IEEE Photon. Technol. Lett. 15, 718 (2003).
[CrossRef]

Q. Li, X. Liu, J. Peng, B. Zhou, E. R. Lyons, and H. P. Lee, IEEE Photon. Technol. Lett. 14, 337 (2002).
[CrossRef]

Li, Q.

Q. Li, A. A. Au, C. H. Lin, I. V. Tomov, and H. P. Lee, IEEE Photon. Technol. Lett. 15, 718 (2003).
[CrossRef]

Q. Li, X. Liu, J. Peng, B. Zhou, E. R. Lyons, and H. P. Lee, IEEE Photon. Technol. Lett. 14, 337 (2002).
[CrossRef]

Lin, C. H.

Q. Li, A. A. Au, C. H. Lin, I. V. Tomov, and H. P. Lee, IEEE Photon. Technol. Lett. 15, 718 (2003).
[CrossRef]

Liu, X.

Q. Li, X. Liu, J. Peng, B. Zhou, E. R. Lyons, and H. P. Lee, IEEE Photon. Technol. Lett. 14, 337 (2002).
[CrossRef]

Lyons, E. R.

Q. Li, X. Liu, J. Peng, B. Zhou, E. R. Lyons, and H. P. Lee, IEEE Photon. Technol. Lett. 14, 337 (2002).
[CrossRef]

Nelson, J. S.

Oh, S. T.

Paek, U. C.

Peng, J.

Q. Li, X. Liu, J. Peng, B. Zhou, E. R. Lyons, and H. P. Lee, IEEE Photon. Technol. Lett. 14, 337 (2002).
[CrossRef]

Pereira, S.

Shu, X.

Siddiqui, A. S.

A. Yu and A. S. Siddiqui, IEE Proc. Optoelectron. 141, 1 (1994).
[CrossRef]

Sipe, J. E.

Slusher, R. E.

Spalter, S.

Spillane, S. M.

K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

Sugden, K.

Tomov, I. V.

Q. Li, A. A. Au, C. H. Lin, I. V. Tomov, and H. P. Lee, IEEE Photon. Technol. Lett. 15, 718 (2003).
[CrossRef]

Vahala, K. J.

K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

Yu, A.

A. Yu and A. S. Siddiqui, IEE Proc. Optoelectron. 141, 1 (1994).
[CrossRef]

Yu, L.

Yun, S. H.

Zhang, J.

Zhang, L.

Zhao, D.

Zhou, B.

Q. Li, X. Liu, J. Peng, B. Zhou, E. R. Lyons, and H. P. Lee, IEEE Photon. Technol. Lett. 14, 337 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the PDL element placed (a) outside and (b) inside a Sagnac interferometer containing two polarization-converting elements, A and B. The effect of the folded fiber inside the Sagnac loop is represented by matrix R as labeled in the figure.

Fig. 2
Fig. 2

(a) Transmission spectra of the fiber AOTF for various input SOPs when the AOTF is placed outside (dashed curves) and inside (solid curves) the Sagnac interferometer. (b) Corresponding PDL of the device described in (a) under the two placements.

Fig. 3
Fig. 3

(a) Transmission spectra of a cascaded two-stage LPFG (CLPFG) for various input SOPs when the CLPFG is placed outside (dashed curves) and inside (solid curve) the Sagnac interferometer. (b) Corresponding PDL of the device described in (a) under the two placements.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Jp=αλexp-jϕ1λ00βλexp-jϕ2λ,
JA=A-B*BA*,  JB=C-D*DC*,
Tλ=KRJAJPJBK+KXJBTJPTJATRKX=tsλ01-10,
Ioutλ=tsλ2Ex2+Ey2,
R=-1001,  K=1-kx1/2001-ky1/2,  KX=jkx1/200jky1/2,
tsλ=12αλexp-jϕ1AD*-BC+βλexp-jϕ2B*C*-A*D.
1001,  cos θ-sin θsin θcos θ×expiΓλ/200exp-iΓλ/2cos θsin θ-sin θcos θ,
Tλ=14αλ+βλ2 sin2Γλ2 sin2 2θ.

Metrics