Abstract

We have observed stimulated rotational Raman scattering (SRRS) from para-H2 pumped by a CO2 TEA laser operating on the strong P- and R-branch transitions of both the 9.4- and 10.6-μm bands. Small signal gain for the Stokes wave in excess of 80 dB has been obtained for TEM00 pump powers of 8.5 MW in a multiple-pass gain cell cooled to liquid-nitrogen temperatures.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. D. Cantrell, R. J. Carbone, R. S. Cooper, “Infrared laser system,” U. S. Patent4,061,921.
  2. R. L. Byer, “A 16 μm source for laser isotope enrichment,” IEEE J. Quantum Electron. QE-12, 732–733 (1976).
    [CrossRef]
  3. P. P. Sorokin, M. M. T. Loy, J. R. Lankard, “A 16 μm radiation source utilizing four-wave mixing in cooled para-hydrogen gas,” IEEE J. Quantum Electron. QE-13, 871–875, (1977).
    [CrossRef]
  4. R. L. Byer, “16 μm generation by CO2 pumped rotational Raman scattering in H2,” 10th International Quantum Electronics Conference, May 29–June 1, 1978, Atlanta, Georgia, postdeadline paper P.1.
  5. G. D. Boyd, W. D. Johnston, I. Kaminow, “Optimization of the stimulated Raman scattering threshold,” IEEE J. Quantum Electron. QE-5, 203–206 (1969).
    [CrossRef]
  6. R. W. Minck, E. E. Hagenlocker, W. G. Rado, “Consideration and Evaluation of Factors Influencing the Stimulated Optical Scattering in Gases,” Ford Motor Company Tech. Rep. SL66-24, March1966.
  7. E. Yablonovitch, Harvard University (personal communication).
  8. R. W. Minck, E. E. Hagenlocker, W. G. Rado, “Stimulated pure rotational Raman scattering in deuterium,” Phys. Rev. Lett. 17, 229–231 (1966).
    [CrossRef]
  9. P. Rabinowitz, A. Kaldor, R. Brickman, W. Schmidt, “Waveguide H2 Raman laser,” Appl. Opt. 15, 2005–2006 (1976).
    [CrossRef] [PubMed]
  10. D. Herriott, H. Kogelnik, R. Kompfner, “Off-axis paths in spherical mirror interferometers,” Appl. Opt. 3, 523–526 (1964).
    [CrossRef]

1977 (1)

P. P. Sorokin, M. M. T. Loy, J. R. Lankard, “A 16 μm radiation source utilizing four-wave mixing in cooled para-hydrogen gas,” IEEE J. Quantum Electron. QE-13, 871–875, (1977).
[CrossRef]

1976 (2)

P. Rabinowitz, A. Kaldor, R. Brickman, W. Schmidt, “Waveguide H2 Raman laser,” Appl. Opt. 15, 2005–2006 (1976).
[CrossRef] [PubMed]

R. L. Byer, “A 16 μm source for laser isotope enrichment,” IEEE J. Quantum Electron. QE-12, 732–733 (1976).
[CrossRef]

1969 (1)

G. D. Boyd, W. D. Johnston, I. Kaminow, “Optimization of the stimulated Raman scattering threshold,” IEEE J. Quantum Electron. QE-5, 203–206 (1969).
[CrossRef]

1966 (1)

R. W. Minck, E. E. Hagenlocker, W. G. Rado, “Stimulated pure rotational Raman scattering in deuterium,” Phys. Rev. Lett. 17, 229–231 (1966).
[CrossRef]

1964 (1)

Boyd, G. D.

G. D. Boyd, W. D. Johnston, I. Kaminow, “Optimization of the stimulated Raman scattering threshold,” IEEE J. Quantum Electron. QE-5, 203–206 (1969).
[CrossRef]

Brickman, R.

Byer, R. L.

R. L. Byer, “A 16 μm source for laser isotope enrichment,” IEEE J. Quantum Electron. QE-12, 732–733 (1976).
[CrossRef]

R. L. Byer, “16 μm generation by CO2 pumped rotational Raman scattering in H2,” 10th International Quantum Electronics Conference, May 29–June 1, 1978, Atlanta, Georgia, postdeadline paper P.1.

Cantrell, C. D.

C. D. Cantrell, R. J. Carbone, R. S. Cooper, “Infrared laser system,” U. S. Patent4,061,921.

Carbone, R. J.

C. D. Cantrell, R. J. Carbone, R. S. Cooper, “Infrared laser system,” U. S. Patent4,061,921.

Cooper, R. S.

C. D. Cantrell, R. J. Carbone, R. S. Cooper, “Infrared laser system,” U. S. Patent4,061,921.

Hagenlocker, E. E.

R. W. Minck, E. E. Hagenlocker, W. G. Rado, “Stimulated pure rotational Raman scattering in deuterium,” Phys. Rev. Lett. 17, 229–231 (1966).
[CrossRef]

R. W. Minck, E. E. Hagenlocker, W. G. Rado, “Consideration and Evaluation of Factors Influencing the Stimulated Optical Scattering in Gases,” Ford Motor Company Tech. Rep. SL66-24, March1966.

Herriott, D.

Johnston, W. D.

G. D. Boyd, W. D. Johnston, I. Kaminow, “Optimization of the stimulated Raman scattering threshold,” IEEE J. Quantum Electron. QE-5, 203–206 (1969).
[CrossRef]

Kaldor, A.

Kaminow, I.

G. D. Boyd, W. D. Johnston, I. Kaminow, “Optimization of the stimulated Raman scattering threshold,” IEEE J. Quantum Electron. QE-5, 203–206 (1969).
[CrossRef]

Kogelnik, H.

Kompfner, R.

Lankard, J. R.

P. P. Sorokin, M. M. T. Loy, J. R. Lankard, “A 16 μm radiation source utilizing four-wave mixing in cooled para-hydrogen gas,” IEEE J. Quantum Electron. QE-13, 871–875, (1977).
[CrossRef]

Loy, M. M. T.

P. P. Sorokin, M. M. T. Loy, J. R. Lankard, “A 16 μm radiation source utilizing four-wave mixing in cooled para-hydrogen gas,” IEEE J. Quantum Electron. QE-13, 871–875, (1977).
[CrossRef]

Minck, R. W.

R. W. Minck, E. E. Hagenlocker, W. G. Rado, “Stimulated pure rotational Raman scattering in deuterium,” Phys. Rev. Lett. 17, 229–231 (1966).
[CrossRef]

R. W. Minck, E. E. Hagenlocker, W. G. Rado, “Consideration and Evaluation of Factors Influencing the Stimulated Optical Scattering in Gases,” Ford Motor Company Tech. Rep. SL66-24, March1966.

Rabinowitz, P.

Rado, W. G.

R. W. Minck, E. E. Hagenlocker, W. G. Rado, “Stimulated pure rotational Raman scattering in deuterium,” Phys. Rev. Lett. 17, 229–231 (1966).
[CrossRef]

R. W. Minck, E. E. Hagenlocker, W. G. Rado, “Consideration and Evaluation of Factors Influencing the Stimulated Optical Scattering in Gases,” Ford Motor Company Tech. Rep. SL66-24, March1966.

Schmidt, W.

Sorokin, P. P.

P. P. Sorokin, M. M. T. Loy, J. R. Lankard, “A 16 μm radiation source utilizing four-wave mixing in cooled para-hydrogen gas,” IEEE J. Quantum Electron. QE-13, 871–875, (1977).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, Harvard University (personal communication).

Appl. Opt. (2)

IEEE J. Quantum Electron. (3)

R. L. Byer, “A 16 μm source for laser isotope enrichment,” IEEE J. Quantum Electron. QE-12, 732–733 (1976).
[CrossRef]

P. P. Sorokin, M. M. T. Loy, J. R. Lankard, “A 16 μm radiation source utilizing four-wave mixing in cooled para-hydrogen gas,” IEEE J. Quantum Electron. QE-13, 871–875, (1977).
[CrossRef]

G. D. Boyd, W. D. Johnston, I. Kaminow, “Optimization of the stimulated Raman scattering threshold,” IEEE J. Quantum Electron. QE-5, 203–206 (1969).
[CrossRef]

Phys. Rev. Lett. (1)

R. W. Minck, E. E. Hagenlocker, W. G. Rado, “Stimulated pure rotational Raman scattering in deuterium,” Phys. Rev. Lett. 17, 229–231 (1966).
[CrossRef]

Other (4)

C. D. Cantrell, R. J. Carbone, R. S. Cooper, “Infrared laser system,” U. S. Patent4,061,921.

R. W. Minck, E. E. Hagenlocker, W. G. Rado, “Consideration and Evaluation of Factors Influencing the Stimulated Optical Scattering in Gases,” Ford Motor Company Tech. Rep. SL66-24, March1966.

E. Yablonovitch, Harvard University (personal communication).

R. L. Byer, “16 μm generation by CO2 pumped rotational Raman scattering in H2,” 10th International Quantum Electronics Conference, May 29–June 1, 1978, Atlanta, Georgia, postdeadline paper P.1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Experimental apparatus.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

g = ( 4 f α P / λ P ) tan - 1 ( 2 z / b ) ,
α = ( 2 ω s χ r / n s n p c 2 0 ) ,
g = g ( 1 - r s ) / ( 1 - r ) ,

Metrics