Abstract

A flat object surface and a hologram plate are both illuminated at an oblique angle by laser light of short pulse duration or short coherence length. Only those parts of the object surface are holographically recorded that correspond to a small-pathlength difference between object beam and reference beam. The holographic plate therefore corresponds to an infinite set of gated viewing systems triggered by the traversing reference beam. Scanning along the processed plate produces a continuous-motion picture of the light in flight. This new technique probably represents the ultimate in high-speed photographic recording, as no mechanical or electrical inertia is involved.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Giordmaine, P. M. Rentzepis, S. L. Shapiro, K. W. Wecht, Appl. Phys. Lett. 11, 216 (1967).
    [CrossRef]
  2. M. A. Duguay, Am. Sci. 59, 551 (1971).
  3. D. T. Attwood, L. W. Coleman, D. W. Sweeney, Appl. Phys. Lett. 26, 616 (1975).
    [CrossRef]
  4. N. Abramson, Appl. Opt. 11, 2562 (1972).
    [CrossRef] [PubMed]
  5. N. Abramson, “Nondestructive testing and metrology,” in Optical Data Processing, Applications, D. Casasent, ed., Topics in Applied Physics, Vol. 23 (Springer-Verlag, Berlin, 1978), Chap. 6.
    [CrossRef]

1975

D. T. Attwood, L. W. Coleman, D. W. Sweeney, Appl. Phys. Lett. 26, 616 (1975).
[CrossRef]

1972

1971

M. A. Duguay, Am. Sci. 59, 551 (1971).

1967

J. A. Giordmaine, P. M. Rentzepis, S. L. Shapiro, K. W. Wecht, Appl. Phys. Lett. 11, 216 (1967).
[CrossRef]

Abramson, N.

N. Abramson, Appl. Opt. 11, 2562 (1972).
[CrossRef] [PubMed]

N. Abramson, “Nondestructive testing and metrology,” in Optical Data Processing, Applications, D. Casasent, ed., Topics in Applied Physics, Vol. 23 (Springer-Verlag, Berlin, 1978), Chap. 6.
[CrossRef]

Attwood, D. T.

D. T. Attwood, L. W. Coleman, D. W. Sweeney, Appl. Phys. Lett. 26, 616 (1975).
[CrossRef]

Coleman, L. W.

D. T. Attwood, L. W. Coleman, D. W. Sweeney, Appl. Phys. Lett. 26, 616 (1975).
[CrossRef]

Duguay, M. A.

M. A. Duguay, Am. Sci. 59, 551 (1971).

Giordmaine, J. A.

J. A. Giordmaine, P. M. Rentzepis, S. L. Shapiro, K. W. Wecht, Appl. Phys. Lett. 11, 216 (1967).
[CrossRef]

Rentzepis, P. M.

J. A. Giordmaine, P. M. Rentzepis, S. L. Shapiro, K. W. Wecht, Appl. Phys. Lett. 11, 216 (1967).
[CrossRef]

Shapiro, S. L.

J. A. Giordmaine, P. M. Rentzepis, S. L. Shapiro, K. W. Wecht, Appl. Phys. Lett. 11, 216 (1967).
[CrossRef]

Sweeney, D. W.

D. T. Attwood, L. W. Coleman, D. W. Sweeney, Appl. Phys. Lett. 26, 616 (1975).
[CrossRef]

Wecht, K. W.

J. A. Giordmaine, P. M. Rentzepis, S. L. Shapiro, K. W. Wecht, Appl. Phys. Lett. 11, 216 (1967).
[CrossRef]

Am. Sci.

M. A. Duguay, Am. Sci. 59, 551 (1971).

Appl. Opt.

Appl. Phys. Lett.

J. A. Giordmaine, P. M. Rentzepis, S. L. Shapiro, K. W. Wecht, Appl. Phys. Lett. 11, 216 (1967).
[CrossRef]

D. T. Attwood, L. W. Coleman, D. W. Sweeney, Appl. Phys. Lett. 26, 616 (1975).
[CrossRef]

Other

N. Abramson, “Nondestructive testing and metrology,” in Optical Data Processing, Applications, D. Casasent, ed., Topics in Applied Physics, Vol. 23 (Springer-Verlag, Berlin, 1978), Chap. 6.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

L, laser; A, spatial filter; O, object; C, observed point; H, hologram plate; B, point of observation; and D and E, two mirrors. e0, e1, and e2 are portions of ellipsoids perpendicular to the bisector of ACB, while h0, h1 and h2 are portions of hyperboloids parallel to the bisector of CBD. From the intersection of H by h0, only those parts on O are seen that represent its intersection by e0 because the pathlength ACB is equal to AEDB.

Fig. 2
Fig. 2

L, laser; A, spatial filter; O, object surface; M, mirror; Wm, main wavefront; and Wr, reflected wavefront.

Fig. 3
Fig. 3

(a) A spherical wavefront from an argon laser enters at the left, illuminating a white-painted flat object surface at an oblique angle. The lower left end of a tilted mirror is just reached. (b) The wavefront has reached the middle of the mirror, the normal of which is inclined 40° to the horizontal line. The light is being reflected by the mirror upward and to the left. (c) All the reflected light is separating from the main wavefront, which has just passed the mirror. (d) The two components of the light have separated completely, the reflected light leaving a black hole in the spherical wavefront, which exits to the right

Metrics