Abstract

The use of capacitive-mesh output couplers for optically pumped far-infrared molecular lasers has been extended throughout the far-infrared spectrum, between 42 μm and 1.2 mm, and the optimum grid constants have been found for several lines. At shorter wavelengths, performance has been improved by the use of a novel hybrid capacitive-mesh hole output coupler.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. T. Hodges, F. B. Foote, R. D. Reel, “Efficient high-power operation of the cw far-infrared waveguide laser,” Appl. Phys. Lett. 29, 662 (1976).
    [CrossRef]
  2. D. T. Hodges, F. B. Foote, R. D. Reel, “High-power operation and scaling behavior of cw optically pumped FIR waveguide lasers,” IEEE J. Quantum Electron. QE-13, 491 (1977).
    [CrossRef]
  3. T. A. DeTemple, E. J. Danielewicz, “Continuous-wave CH3F waveguide laser at 496 μm: theory and experiment,” IEEE J. Quantum Electron. QE-12, 40 (1976).
    [CrossRef]
  4. E. J. Danielewicz, T. K. Plant, T. A. DeTemple, “Hybrid output mirror for optically pumped far-infrared lasers,” Opt. Commun. 13, 366 (1975).
    [CrossRef]
  5. M. R. Schubert, M. S. Durschlag, T. A. DeTemple, “Diffraction-limited cw lasers,” IEEE J. Quantum Electron. QE-13, 455 (1977).
    [CrossRef]
  6. K. M. Evenson, D. A. Jennings, F. R. Peterson, J. A. Mucha, J. J. Jimenez, R. M. Charlton, C. J. Howard, “Optically pumped FIR lasers: frequency and power measurements and laser magnetic resonance spectroscopy,” IEEE J. Quantum Electron. QE-13, 442 (1977).
    [CrossRef]
  7. S. M. Wolfe, K. J. Button, J. Waldman, D. R. Cohn, “Modulated submillimeter laser interferometer system for plasma density measurements,” Appl. Opt. 15, 2645 (1976).
    [CrossRef] [PubMed]
  8. R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7, 37 (1967); R. Ulrich, K. F. Renk, L. Genzel, “Tunable submillimeter interferometers of the Fabry–Perot type,” IEEE Trans. Microwave Theory Tech. MTT-11, 363 (1963).
    [CrossRef]
  9. Apollo Lasers Model 550L.
  10. Buckbee Mears Co., St. Paul, Minn. The range of meshes available is sufficient to give useful values of g and 2a at all wavelengths in the FIR.
  11. J. J. Degnan, “Waveguide laser mode patterns in the near and far field,” Appl. Opt. 12, 1026 (1973).
    [CrossRef] [PubMed]

1977 (3)

M. R. Schubert, M. S. Durschlag, T. A. DeTemple, “Diffraction-limited cw lasers,” IEEE J. Quantum Electron. QE-13, 455 (1977).
[CrossRef]

K. M. Evenson, D. A. Jennings, F. R. Peterson, J. A. Mucha, J. J. Jimenez, R. M. Charlton, C. J. Howard, “Optically pumped FIR lasers: frequency and power measurements and laser magnetic resonance spectroscopy,” IEEE J. Quantum Electron. QE-13, 442 (1977).
[CrossRef]

D. T. Hodges, F. B. Foote, R. D. Reel, “High-power operation and scaling behavior of cw optically pumped FIR waveguide lasers,” IEEE J. Quantum Electron. QE-13, 491 (1977).
[CrossRef]

1976 (3)

T. A. DeTemple, E. J. Danielewicz, “Continuous-wave CH3F waveguide laser at 496 μm: theory and experiment,” IEEE J. Quantum Electron. QE-12, 40 (1976).
[CrossRef]

D. T. Hodges, F. B. Foote, R. D. Reel, “Efficient high-power operation of the cw far-infrared waveguide laser,” Appl. Phys. Lett. 29, 662 (1976).
[CrossRef]

S. M. Wolfe, K. J. Button, J. Waldman, D. R. Cohn, “Modulated submillimeter laser interferometer system for plasma density measurements,” Appl. Opt. 15, 2645 (1976).
[CrossRef] [PubMed]

1975 (1)

E. J. Danielewicz, T. K. Plant, T. A. DeTemple, “Hybrid output mirror for optically pumped far-infrared lasers,” Opt. Commun. 13, 366 (1975).
[CrossRef]

1973 (1)

1967 (1)

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7, 37 (1967); R. Ulrich, K. F. Renk, L. Genzel, “Tunable submillimeter interferometers of the Fabry–Perot type,” IEEE Trans. Microwave Theory Tech. MTT-11, 363 (1963).
[CrossRef]

Button, K. J.

Charlton, R. M.

K. M. Evenson, D. A. Jennings, F. R. Peterson, J. A. Mucha, J. J. Jimenez, R. M. Charlton, C. J. Howard, “Optically pumped FIR lasers: frequency and power measurements and laser magnetic resonance spectroscopy,” IEEE J. Quantum Electron. QE-13, 442 (1977).
[CrossRef]

Cohn, D. R.

Danielewicz, E. J.

T. A. DeTemple, E. J. Danielewicz, “Continuous-wave CH3F waveguide laser at 496 μm: theory and experiment,” IEEE J. Quantum Electron. QE-12, 40 (1976).
[CrossRef]

E. J. Danielewicz, T. K. Plant, T. A. DeTemple, “Hybrid output mirror for optically pumped far-infrared lasers,” Opt. Commun. 13, 366 (1975).
[CrossRef]

Degnan, J. J.

DeTemple, T. A.

M. R. Schubert, M. S. Durschlag, T. A. DeTemple, “Diffraction-limited cw lasers,” IEEE J. Quantum Electron. QE-13, 455 (1977).
[CrossRef]

T. A. DeTemple, E. J. Danielewicz, “Continuous-wave CH3F waveguide laser at 496 μm: theory and experiment,” IEEE J. Quantum Electron. QE-12, 40 (1976).
[CrossRef]

E. J. Danielewicz, T. K. Plant, T. A. DeTemple, “Hybrid output mirror for optically pumped far-infrared lasers,” Opt. Commun. 13, 366 (1975).
[CrossRef]

Durschlag, M. S.

M. R. Schubert, M. S. Durschlag, T. A. DeTemple, “Diffraction-limited cw lasers,” IEEE J. Quantum Electron. QE-13, 455 (1977).
[CrossRef]

Evenson, K. M.

K. M. Evenson, D. A. Jennings, F. R. Peterson, J. A. Mucha, J. J. Jimenez, R. M. Charlton, C. J. Howard, “Optically pumped FIR lasers: frequency and power measurements and laser magnetic resonance spectroscopy,” IEEE J. Quantum Electron. QE-13, 442 (1977).
[CrossRef]

Foote, F. B.

D. T. Hodges, F. B. Foote, R. D. Reel, “High-power operation and scaling behavior of cw optically pumped FIR waveguide lasers,” IEEE J. Quantum Electron. QE-13, 491 (1977).
[CrossRef]

D. T. Hodges, F. B. Foote, R. D. Reel, “Efficient high-power operation of the cw far-infrared waveguide laser,” Appl. Phys. Lett. 29, 662 (1976).
[CrossRef]

Hodges, D. T.

D. T. Hodges, F. B. Foote, R. D. Reel, “High-power operation and scaling behavior of cw optically pumped FIR waveguide lasers,” IEEE J. Quantum Electron. QE-13, 491 (1977).
[CrossRef]

D. T. Hodges, F. B. Foote, R. D. Reel, “Efficient high-power operation of the cw far-infrared waveguide laser,” Appl. Phys. Lett. 29, 662 (1976).
[CrossRef]

Howard, C. J.

K. M. Evenson, D. A. Jennings, F. R. Peterson, J. A. Mucha, J. J. Jimenez, R. M. Charlton, C. J. Howard, “Optically pumped FIR lasers: frequency and power measurements and laser magnetic resonance spectroscopy,” IEEE J. Quantum Electron. QE-13, 442 (1977).
[CrossRef]

Jennings, D. A.

K. M. Evenson, D. A. Jennings, F. R. Peterson, J. A. Mucha, J. J. Jimenez, R. M. Charlton, C. J. Howard, “Optically pumped FIR lasers: frequency and power measurements and laser magnetic resonance spectroscopy,” IEEE J. Quantum Electron. QE-13, 442 (1977).
[CrossRef]

Jimenez, J. J.

K. M. Evenson, D. A. Jennings, F. R. Peterson, J. A. Mucha, J. J. Jimenez, R. M. Charlton, C. J. Howard, “Optically pumped FIR lasers: frequency and power measurements and laser magnetic resonance spectroscopy,” IEEE J. Quantum Electron. QE-13, 442 (1977).
[CrossRef]

Mucha, J. A.

K. M. Evenson, D. A. Jennings, F. R. Peterson, J. A. Mucha, J. J. Jimenez, R. M. Charlton, C. J. Howard, “Optically pumped FIR lasers: frequency and power measurements and laser magnetic resonance spectroscopy,” IEEE J. Quantum Electron. QE-13, 442 (1977).
[CrossRef]

Peterson, F. R.

K. M. Evenson, D. A. Jennings, F. R. Peterson, J. A. Mucha, J. J. Jimenez, R. M. Charlton, C. J. Howard, “Optically pumped FIR lasers: frequency and power measurements and laser magnetic resonance spectroscopy,” IEEE J. Quantum Electron. QE-13, 442 (1977).
[CrossRef]

Plant, T. K.

E. J. Danielewicz, T. K. Plant, T. A. DeTemple, “Hybrid output mirror for optically pumped far-infrared lasers,” Opt. Commun. 13, 366 (1975).
[CrossRef]

Reel, R. D.

D. T. Hodges, F. B. Foote, R. D. Reel, “High-power operation and scaling behavior of cw optically pumped FIR waveguide lasers,” IEEE J. Quantum Electron. QE-13, 491 (1977).
[CrossRef]

D. T. Hodges, F. B. Foote, R. D. Reel, “Efficient high-power operation of the cw far-infrared waveguide laser,” Appl. Phys. Lett. 29, 662 (1976).
[CrossRef]

Schubert, M. R.

M. R. Schubert, M. S. Durschlag, T. A. DeTemple, “Diffraction-limited cw lasers,” IEEE J. Quantum Electron. QE-13, 455 (1977).
[CrossRef]

Ulrich, R.

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7, 37 (1967); R. Ulrich, K. F. Renk, L. Genzel, “Tunable submillimeter interferometers of the Fabry–Perot type,” IEEE Trans. Microwave Theory Tech. MTT-11, 363 (1963).
[CrossRef]

Waldman, J.

Wolfe, S. M.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

D. T. Hodges, F. B. Foote, R. D. Reel, “Efficient high-power operation of the cw far-infrared waveguide laser,” Appl. Phys. Lett. 29, 662 (1976).
[CrossRef]

IEEE J. Quantum Electron. (4)

D. T. Hodges, F. B. Foote, R. D. Reel, “High-power operation and scaling behavior of cw optically pumped FIR waveguide lasers,” IEEE J. Quantum Electron. QE-13, 491 (1977).
[CrossRef]

T. A. DeTemple, E. J. Danielewicz, “Continuous-wave CH3F waveguide laser at 496 μm: theory and experiment,” IEEE J. Quantum Electron. QE-12, 40 (1976).
[CrossRef]

M. R. Schubert, M. S. Durschlag, T. A. DeTemple, “Diffraction-limited cw lasers,” IEEE J. Quantum Electron. QE-13, 455 (1977).
[CrossRef]

K. M. Evenson, D. A. Jennings, F. R. Peterson, J. A. Mucha, J. J. Jimenez, R. M. Charlton, C. J. Howard, “Optically pumped FIR lasers: frequency and power measurements and laser magnetic resonance spectroscopy,” IEEE J. Quantum Electron. QE-13, 442 (1977).
[CrossRef]

Infrared Phys. (1)

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7, 37 (1967); R. Ulrich, K. F. Renk, L. Genzel, “Tunable submillimeter interferometers of the Fabry–Perot type,” IEEE Trans. Microwave Theory Tech. MTT-11, 363 (1963).
[CrossRef]

Opt. Commun. (1)

E. J. Danielewicz, T. K. Plant, T. A. DeTemple, “Hybrid output mirror for optically pumped far-infrared lasers,” Opt. Commun. 13, 366 (1975).
[CrossRef]

Other (2)

Apollo Lasers Model 550L.

Buckbee Mears Co., St. Paul, Minn. The range of meshes available is sufficient to give useful values of g and 2a at all wavelengths in the FIR.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Calculated transmission of capacitive meshes on crystal quartz as functions of wavelength. The thin line shows the etalon effects for mesh G on a 2-mm-thick quartz substrate. The inset on the upper right shows schematically (a) a capacitive-mesh output coupler and (b) a hybrid capacitive-mesh hole coupler.

Fig. 2
Fig. 2

Scan across the output of the strongest mode at 70.5 μm, using a 20-mm-diameter hybrid capacitive-mesh hole output coupler with g = 51 μm. The detector had an aperture of 1 mm and was 3.17 m away from the laser. The dots are the calculated far-field pattern from Eq. (1) in the text and are scaled only to the peak intensity.

Tables (1)

Tables Icon

Table 1 Mesh Constants for FIR Wavelengths

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I { 1 A 2 - ( B r 1 ) 2 [ A J 1 ( A ) J 0 ( B r 1 ) - B r 1 J 0 ( A ) J 1 ( B r 1 ) ] } 2 ,
θ c = f ( r 1 / r ) λ/ r 1 ,

Metrics