Abstract

We study experimentally the influence of chromatic dispersion and Rayleigh backscattering on cascaded Raman generation in silica optical fibers. Effects ranging from enhanced spectral broadening of the Stokes orders to generation of higher Stokes order at unexpected wavelengths are observed. Additionally, we show that four-wave-mixing processes can quench the noisy Rayleigh lasing lines generated in power Raman amplifiers. Our observations are confirmed by numerical simulations.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 2001).
  2. Y. R. Shen and N. Bloembergen, Phys. Rev. 137, A1787 (1965).
    [CrossRef]
  3. V. S. Butylkin, G. V. Venkin, L. L. Kulyuk, D. I. Maleev, Yu. G. Khronopulo, and M. F. Shalyaev, Sov. J. Quantum Electron. 7, 867 (1977).
    [CrossRef]
  4. T. Sylvestre, H. Maillotte, E. Lantz, and P. Tchofo Dinda, Opt. Lett. 24, 1561 (1999).
    [CrossRef]
  5. F. Vanholsbeeck, Ph. Emplit, and S. Coen, Opt. Lett. 28, 1960 (2003).
    [CrossRef] [PubMed]
  6. R. H. Stolen, C. Lee, and R. K. Jain, J. Opt. Soc. Am. B 1, 652 (1984).
    [CrossRef]
  7. M. D. Duncan, R. Mahon, L. L. Tankersley, and J. Reintjes, Opt. Commun. 86, 538 (1991).
    [CrossRef]
  8. C.-J. Chen, H. Lee, and Y.-J. Cheng, in Optical Fiber Communication Conference, Vol. 86 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper TuC2.
  9. F. R. Barbosa, Appl. Opt. 22, 3859 (1983).
    [CrossRef] [PubMed]
  10. F. Vanholsbeeck, S. Coen, C. Martinelli, Ph. Emplit, and T. Sylvestre, in Optical Amplifiers and Their Applications, Vol. 93 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper MC4.

2003 (1)

1999 (1)

1991 (1)

M. D. Duncan, R. Mahon, L. L. Tankersley, and J. Reintjes, Opt. Commun. 86, 538 (1991).
[CrossRef]

1984 (1)

1983 (1)

1977 (1)

V. S. Butylkin, G. V. Venkin, L. L. Kulyuk, D. I. Maleev, Yu. G. Khronopulo, and M. F. Shalyaev, Sov. J. Quantum Electron. 7, 867 (1977).
[CrossRef]

1965 (1)

Y. R. Shen and N. Bloembergen, Phys. Rev. 137, A1787 (1965).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 2001).

Barbosa, F. R.

Bloembergen, N.

Y. R. Shen and N. Bloembergen, Phys. Rev. 137, A1787 (1965).
[CrossRef]

Butylkin, V. S.

V. S. Butylkin, G. V. Venkin, L. L. Kulyuk, D. I. Maleev, Yu. G. Khronopulo, and M. F. Shalyaev, Sov. J. Quantum Electron. 7, 867 (1977).
[CrossRef]

Chen, C.-J.

C.-J. Chen, H. Lee, and Y.-J. Cheng, in Optical Fiber Communication Conference, Vol. 86 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper TuC2.

Cheng, Y.-J.

C.-J. Chen, H. Lee, and Y.-J. Cheng, in Optical Fiber Communication Conference, Vol. 86 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper TuC2.

Coen, S.

F. Vanholsbeeck, Ph. Emplit, and S. Coen, Opt. Lett. 28, 1960 (2003).
[CrossRef] [PubMed]

F. Vanholsbeeck, S. Coen, C. Martinelli, Ph. Emplit, and T. Sylvestre, in Optical Amplifiers and Their Applications, Vol. 93 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper MC4.

Duncan, M. D.

M. D. Duncan, R. Mahon, L. L. Tankersley, and J. Reintjes, Opt. Commun. 86, 538 (1991).
[CrossRef]

Emplit, Ph.

F. Vanholsbeeck, Ph. Emplit, and S. Coen, Opt. Lett. 28, 1960 (2003).
[CrossRef] [PubMed]

F. Vanholsbeeck, S. Coen, C. Martinelli, Ph. Emplit, and T. Sylvestre, in Optical Amplifiers and Their Applications, Vol. 93 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper MC4.

Jain, R. K.

Khronopulo, Yu. G.

V. S. Butylkin, G. V. Venkin, L. L. Kulyuk, D. I. Maleev, Yu. G. Khronopulo, and M. F. Shalyaev, Sov. J. Quantum Electron. 7, 867 (1977).
[CrossRef]

Kulyuk, L. L.

V. S. Butylkin, G. V. Venkin, L. L. Kulyuk, D. I. Maleev, Yu. G. Khronopulo, and M. F. Shalyaev, Sov. J. Quantum Electron. 7, 867 (1977).
[CrossRef]

Lantz, E.

Lee, C.

Lee, H.

C.-J. Chen, H. Lee, and Y.-J. Cheng, in Optical Fiber Communication Conference, Vol. 86 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper TuC2.

Mahon, R.

M. D. Duncan, R. Mahon, L. L. Tankersley, and J. Reintjes, Opt. Commun. 86, 538 (1991).
[CrossRef]

Maillotte, H.

Maleev, D. I.

V. S. Butylkin, G. V. Venkin, L. L. Kulyuk, D. I. Maleev, Yu. G. Khronopulo, and M. F. Shalyaev, Sov. J. Quantum Electron. 7, 867 (1977).
[CrossRef]

Martinelli, C.

F. Vanholsbeeck, S. Coen, C. Martinelli, Ph. Emplit, and T. Sylvestre, in Optical Amplifiers and Their Applications, Vol. 93 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper MC4.

Reintjes, J.

M. D. Duncan, R. Mahon, L. L. Tankersley, and J. Reintjes, Opt. Commun. 86, 538 (1991).
[CrossRef]

Shalyaev, M. F.

V. S. Butylkin, G. V. Venkin, L. L. Kulyuk, D. I. Maleev, Yu. G. Khronopulo, and M. F. Shalyaev, Sov. J. Quantum Electron. 7, 867 (1977).
[CrossRef]

Shen, Y. R.

Y. R. Shen and N. Bloembergen, Phys. Rev. 137, A1787 (1965).
[CrossRef]

Stolen, R. H.

Sylvestre, T.

T. Sylvestre, H. Maillotte, E. Lantz, and P. Tchofo Dinda, Opt. Lett. 24, 1561 (1999).
[CrossRef]

F. Vanholsbeeck, S. Coen, C. Martinelli, Ph. Emplit, and T. Sylvestre, in Optical Amplifiers and Their Applications, Vol. 93 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper MC4.

Tankersley, L. L.

M. D. Duncan, R. Mahon, L. L. Tankersley, and J. Reintjes, Opt. Commun. 86, 538 (1991).
[CrossRef]

Tchofo Dinda, P.

Vanholsbeeck, F.

F. Vanholsbeeck, Ph. Emplit, and S. Coen, Opt. Lett. 28, 1960 (2003).
[CrossRef] [PubMed]

F. Vanholsbeeck, S. Coen, C. Martinelli, Ph. Emplit, and T. Sylvestre, in Optical Amplifiers and Their Applications, Vol. 93 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper MC4.

Venkin, G. V.

V. S. Butylkin, G. V. Venkin, L. L. Kulyuk, D. I. Maleev, Yu. G. Khronopulo, and M. F. Shalyaev, Sov. J. Quantum Electron. 7, 867 (1977).
[CrossRef]

Appl. Opt. (1)

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

M. D. Duncan, R. Mahon, L. L. Tankersley, and J. Reintjes, Opt. Commun. 86, 538 (1991).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. (1)

Y. R. Shen and N. Bloembergen, Phys. Rev. 137, A1787 (1965).
[CrossRef]

Sov. J. Quantum Electron. (1)

V. S. Butylkin, G. V. Venkin, L. L. Kulyuk, D. I. Maleev, Yu. G. Khronopulo, and M. F. Shalyaev, Sov. J. Quantum Electron. 7, 867 (1977).
[CrossRef]

Other (3)

C.-J. Chen, H. Lee, and Y.-J. Cheng, in Optical Fiber Communication Conference, Vol. 86 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper TuC2.

F. Vanholsbeeck, S. Coen, C. Martinelli, Ph. Emplit, and T. Sylvestre, in Optical Amplifiers and Their Applications, Vol. 93 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper MC4.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental forward Raman ASE spectra observed in each of the fibers under investigation.

Fig. 2
Fig. 2

Experimental forward ASE spectra (thin curve) compared with GNLSE simulations (thick curve) for the four NZDSFs.

Fig. 3
Fig. 3

(a) Output power characteristics of the pump and the forward and backward first Stokes orders in NZDSF 4. Experiment (dotted curve) versus simulations with (solid curve) and without (dashed curve, αR=0) Rayleigh scattering. (b) Experimental forward Raman ASE spectra from the SMF at 3-W pump power (SMF and RDF spectra are averaged).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Pp=-αp-CRg+P++g-P-Pp,
P±=±g±CRPp-αs-αRP±+αRP+ρspPp.

Metrics