Abstract

Optimized design of the optical filters inside integrated color pixels (ICPs) for complementary metal-oxide semiconductor image sensors requires analytical models. ICP optical filters consist of subwavelength patterned metal layers. We show that a one-mode model, in which subwavelength gaps in the metal layer are described in terms of single-mode waveguides, suffices to predict the salient features of measured ICP wavelength selectivity. The Airy-like transmittance formula, derived for transverse-electric polarization, predicts an angle-independent cutoff wavelength, which is in good agreement with predictions made with a two-dimensional finite-difference time-domain method.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. B. Catrysse, B. A. Wandell, and A. El Gamal, in 2001 International Electron Devices Meeting—Technical Digest (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2001), pp. 559–562.
  2. P. B. Catrysse and B. A. Wandell, J. Opt. Soc. Am. A 20, 2293 (2003).
    [CrossRef]
  3. B. E. Bayer, “Color imaging array,” U.S. patent 3,971,065 (July 20, 1976).
  4. H. Nabeyama, IEEE Trans. Consumer Electron. CE-27, 40 (1981).
    [CrossRef]
  5. P. B. Catrysse and B. A. Wandell, J. Opt. Soc. Am. A 19, 1610 (2002).
    [CrossRef]
  6. W. Li, P. Ogunbona, S. Yu, and I. Kharitonenko, in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (Institute of Electrical and Electronics Engineering, Piscataway, N.J., 2002), pp. 3576–3579.
  7. A. J. Blanksby and M. J. Loinaz, IEEE Trans. Electron. Dev. 47, 55 (2000).
    [CrossRef]
  8. P. B. Catrysse, X. Liu, and A. El Gamal, Proc. SPIE 3965, 420 (2000).
    [CrossRef]
  9. B. A. Wandell, Foundations of Vision (Sinauer, Sunderland, Mass., 1995), pp. 69–105.
  10. P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Möller, J. Opt. A Pure Appl. Opt. 2, 48 (2000).
    [CrossRef]
  11. M. Born and E. Wolf, Principles of Optics, 6th (corrected) ed. (Pergamon, Oxford, 1980), pp. 38–41.
  12. R. Petit, Electromagnetic Theory of Gratings, Vol. 22 of Springer Topics in Current Physics (Springer-Verlag, Berlin, 1980).
    [CrossRef]
  13. OptiFDTD 2.0, Optiwave Corporation, Ottawa, Canada, 2001.

2002

W. Li, P. Ogunbona, S. Yu, and I. Kharitonenko, in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (Institute of Electrical and Electronics Engineering, Piscataway, N.J., 2002), pp. 3576–3579.

2001

P. B. Catrysse, B. A. Wandell, and A. El Gamal, in 2001 International Electron Devices Meeting—Technical Digest (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2001), pp. 559–562.

OptiFDTD 2.0, Optiwave Corporation, Ottawa, Canada, 2001.

2000

P. B. Catrysse, X. Liu, and A. El Gamal, Proc. SPIE 3965, 420 (2000).
[CrossRef]

1995

B. A. Wandell, Foundations of Vision (Sinauer, Sunderland, Mass., 1995), pp. 69–105.

1980

M. Born and E. Wolf, Principles of Optics, 6th (corrected) ed. (Pergamon, Oxford, 1980), pp. 38–41.

R. Petit, Electromagnetic Theory of Gratings, Vol. 22 of Springer Topics in Current Physics (Springer-Verlag, Berlin, 1980).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics, 6th (corrected) ed. (Pergamon, Oxford, 1980), pp. 38–41.

Catrysse, P. B.

P. B. Catrysse, B. A. Wandell, and A. El Gamal, in 2001 International Electron Devices Meeting—Technical Digest (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2001), pp. 559–562.

P. B. Catrysse, X. Liu, and A. El Gamal, Proc. SPIE 3965, 420 (2000).
[CrossRef]

El Gamal, A.

P. B. Catrysse, B. A. Wandell, and A. El Gamal, in 2001 International Electron Devices Meeting—Technical Digest (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2001), pp. 559–562.

P. B. Catrysse, X. Liu, and A. El Gamal, Proc. SPIE 3965, 420 (2000).
[CrossRef]

Kharitonenko, I.

W. Li, P. Ogunbona, S. Yu, and I. Kharitonenko, in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (Institute of Electrical and Electronics Engineering, Piscataway, N.J., 2002), pp. 3576–3579.

Li, W.

W. Li, P. Ogunbona, S. Yu, and I. Kharitonenko, in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (Institute of Electrical and Electronics Engineering, Piscataway, N.J., 2002), pp. 3576–3579.

Liu, X.

P. B. Catrysse, X. Liu, and A. El Gamal, Proc. SPIE 3965, 420 (2000).
[CrossRef]

Ogunbona, P.

W. Li, P. Ogunbona, S. Yu, and I. Kharitonenko, in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (Institute of Electrical and Electronics Engineering, Piscataway, N.J., 2002), pp. 3576–3579.

Petit, R.

R. Petit, Electromagnetic Theory of Gratings, Vol. 22 of Springer Topics in Current Physics (Springer-Verlag, Berlin, 1980).
[CrossRef]

Wandell, B. A.

P. B. Catrysse, B. A. Wandell, and A. El Gamal, in 2001 International Electron Devices Meeting—Technical Digest (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2001), pp. 559–562.

B. A. Wandell, Foundations of Vision (Sinauer, Sunderland, Mass., 1995), pp. 69–105.

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 6th (corrected) ed. (Pergamon, Oxford, 1980), pp. 38–41.

Yu, S.

W. Li, P. Ogunbona, S. Yu, and I. Kharitonenko, in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (Institute of Electrical and Electronics Engineering, Piscataway, N.J., 2002), pp. 3576–3579.

Proc. SPIE

P. B. Catrysse, X. Liu, and A. El Gamal, Proc. SPIE 3965, 420 (2000).
[CrossRef]

Springer Topics in Current Physics

R. Petit, Electromagnetic Theory of Gratings, Vol. 22 of Springer Topics in Current Physics (Springer-Verlag, Berlin, 1980).
[CrossRef]

Other

OptiFDTD 2.0, Optiwave Corporation, Ottawa, Canada, 2001.

B. A. Wandell, Foundations of Vision (Sinauer, Sunderland, Mass., 1995), pp. 69–105.

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Möller, J. Opt. A Pure Appl. Opt. 2, 48 (2000).
[CrossRef]

M. Born and E. Wolf, Principles of Optics, 6th (corrected) ed. (Pergamon, Oxford, 1980), pp. 38–41.

P. B. Catrysse, B. A. Wandell, and A. El Gamal, in 2001 International Electron Devices Meeting—Technical Digest (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2001), pp. 559–562.

P. B. Catrysse and B. A. Wandell, J. Opt. Soc. Am. A 20, 2293 (2003).
[CrossRef]

B. E. Bayer, “Color imaging array,” U.S. patent 3,971,065 (July 20, 1976).

H. Nabeyama, IEEE Trans. Consumer Electron. CE-27, 40 (1981).
[CrossRef]

P. B. Catrysse and B. A. Wandell, J. Opt. Soc. Am. A 19, 1610 (2002).
[CrossRef]

W. Li, P. Ogunbona, S. Yu, and I. Kharitonenko, in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (Institute of Electrical and Electronics Engineering, Piscataway, N.J., 2002), pp. 3576–3579.

A. J. Blanksby and M. J. Loinaz, IEEE Trans. Electron. Dev. 47, 55 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Geometry of four CMOS image sensor pixels: (a) Conventional arrangement with a red–green–blue color filter array placed on the sensor surface, (b) ICP arrangement that contains patterned metal layers (shown in color) inside the pixel. Used by permission of copyright holder, R. Motta, 2001.

Fig. 2
Fig. 2

Measured transmittance of 1D ICPs with a 270-nm gap width designed in 0.18µm CMOS technology. Measurements are shown for collimated, TE-polarized illumination. Inset, scanning electron micrograph of the ICP patterned metal layers.

Fig. 3
Fig. 3

Transmittance of the patterned metal layer versus wavelength for normally incident TE-polarized light. The one-mode model is compared with 2D FDTD simulations of finite (24µm-wide simulation domain) and infinite extent in the x direction. Inset, simulation geometry and parameters.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Tq=2p1u-p1-p22+p1+p22u22γ0I01*Iq1Λ,
u=exp-jneffk0h,
Iq1=-wπexpjαqw+1w2αq2-π2w2αq2π2-w2jw2αq2=π2,
p1=neffnw2,
p2=p=-Ip1ΛγpIp1*,

Metrics