Abstract

We propose a fly-eye-like imaging system for seeing objects embedded in scattering media. Objects are recovered from many speckled images observed by a digital camera through a microlens array. Each microlens in the array generates a speckle image of the object buried between two layers of chicken breast tissue. In the computer each image is Fourier transformed jointly with an image of the speckled pointlike source captured under the same conditions. A set of the squared magnitudes of the Fourier-transformed pictures is accumulated to form a single average picture. This final picture is again Fourier transformed, resulting in the reconstruction of the hidden object.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Hebden, S. R. Arridge, and D. T. Delpy, Phys. Med. Biol. 42, 825 (1997).
    [CrossRef] [PubMed]
  2. A. Labeyrie, Astron. Astrophys. 6, 85 (1970).
  3. R. H. T. Bates and F. M. Cady, Opt. Commun. 32, 365 (1980).
    [CrossRef]
  4. J. Rosen and D. Abookasis, Opt. Lett. 29, 253 (2004).
    [CrossRef] [PubMed]
  5. C. Y. C. Liu and A. W. Lohmann, Opt. Commun. 8, 372 (1973).
    [CrossRef]

2004 (1)

1997 (1)

J. C. Hebden, S. R. Arridge, and D. T. Delpy, Phys. Med. Biol. 42, 825 (1997).
[CrossRef] [PubMed]

1980 (1)

R. H. T. Bates and F. M. Cady, Opt. Commun. 32, 365 (1980).
[CrossRef]

1973 (1)

C. Y. C. Liu and A. W. Lohmann, Opt. Commun. 8, 372 (1973).
[CrossRef]

1970 (1)

A. Labeyrie, Astron. Astrophys. 6, 85 (1970).

Abookasis, D.

Arridge, S. R.

J. C. Hebden, S. R. Arridge, and D. T. Delpy, Phys. Med. Biol. 42, 825 (1997).
[CrossRef] [PubMed]

Bates, R. H. T.

R. H. T. Bates and F. M. Cady, Opt. Commun. 32, 365 (1980).
[CrossRef]

Cady, F. M.

R. H. T. Bates and F. M. Cady, Opt. Commun. 32, 365 (1980).
[CrossRef]

Delpy, D. T.

J. C. Hebden, S. R. Arridge, and D. T. Delpy, Phys. Med. Biol. 42, 825 (1997).
[CrossRef] [PubMed]

Hebden, J. C.

J. C. Hebden, S. R. Arridge, and D. T. Delpy, Phys. Med. Biol. 42, 825 (1997).
[CrossRef] [PubMed]

Labeyrie, A.

A. Labeyrie, Astron. Astrophys. 6, 85 (1970).

Liu, C. Y. C.

C. Y. C. Liu and A. W. Lohmann, Opt. Commun. 8, 372 (1973).
[CrossRef]

Lohmann, A. W.

C. Y. C. Liu and A. W. Lohmann, Opt. Commun. 8, 372 (1973).
[CrossRef]

Rosen, J.

Astron. Astrophys. (1)

A. Labeyrie, Astron. Astrophys. 6, 85 (1970).

Opt. Commun. (2)

R. H. T. Bates and F. M. Cady, Opt. Commun. 32, 365 (1980).
[CrossRef]

C. Y. C. Liu and A. W. Lohmann, Opt. Commun. 8, 372 (1973).
[CrossRef]

Opt. Lett. (1)

Phys. Med. Biol. (1)

J. C. Hebden, S. R. Arridge, and D. T. Delpy, Phys. Med. Biol. 42, 825 (1997).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the NOISE system.

Fig. 2
Fig. 2

Twenty-two projections, of 132 speckled images, of (a) the point-source reference and (b) the object.

Fig. 3
Fig. 3

(a) Experimental results of the NOISE system. The desired image of the observed object is recovered on both sidelobes. (b) Left sidelobe from (a). (c) Average picture of the entire array when the letter V is positioned in front of layer T1 and layer T2 is removed. (d) Recovered image of the letter V obtained by our previous algorithm.4

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

fkx,y=sx,y*hkx,y2, rkx,yδx,y*hkx,y2=hkx,y2, k=1,2,,K,
1Kkhkx,yh0x,y,
Iu,v=1KkIku,v=1KkF2Dfkx+xk+a/2,y+yk+b/2+rkx+xk-a/2,y+yk-b/221KkFku,v2+Rku,v2+Fk*u,vRku,vexp-i2πau+bv+Fku,vRk*u,vexpi2πau+bv,
Coutξ,η=1Kkfkξ,ηfkξ,η+rkξ,ηrkξ,η+1Kkrkξ,ηfkξ,η*δξ-a,η-b+1Kkfkξ,ηrkξ,η*δξ+a,η+b,
C3ξ-a,η-b=1Kksξ,η*hkξ,η2hkξ,η2sξ,η*h0ξ,η2h0ξ,η2+σ2ξ,η*sξ,η2h0ξ,η2+σ2ξ,ηsξ,η*h0ξ,η2+sξ,η2*σ2ξ,η.

Metrics