Abstract

We describe a novel wavelength-parallel polarimeter operating in the light-wave band that measures the complete state of polarization of 256 wavelengths in parallel within 20 ms (software-limited), with the potential for submillisecond operation. By use of fast switching ferroelectric liquid crystals in conjunction with an InGaAs arrayed detector, selection and wavelength-parallel detection of individual polarization components can be achieved within approximately 150 µs. This instrument offers unprecedented sensing capability that is relevant to the compensation of polarization-related impairments in high-speed light-wave communications.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. D. Poole and J. Nagel, in Optical Fiber Telecommunications, I. P. Kaminow and T. L. Koch, eds. (Academic, San Diego, Calif., 1997), Vol. IIIA, pp. 114–161.
    [CrossRef]
  2. D. L. Peterson, B. C. Ward, K. B. Rochford, P. J. Leo, and G. Simer, Opt. Express 10, 614 (2002), http://www.opticsexpress.org .
    [CrossRef]
  3. D. S. Waddy, L. Chen, and X. Bao, IEEE Photon. Technol. Lett. 4, 468 (2002).
    [CrossRef]
  4. M. Karlsson, J. Brentel, and P. A. Andrekson, J. Light-wave Technol. 18, 941 (2000).
    [CrossRef]
  5. R. Chipman, in Handbook of Optics, M. Bass, E. W. Van Stryland, D. R. Williams, and W. L. Wolfe, eds. (Optical Society of America, Washington, D.C., 1994), Vol. II, pp. 22.1–22.22.
  6. S. T. Lagerwall, Ferroelectric and Antiferroelectric Liquid Crystals (Wiley–VCH, New York, 1999).
    [CrossRef]
  7. P. A. Williams, Optoelectronics Division, National Institute of Standards and Technology, Boulder, Colo. 80305 (personal communication, 2002).

2002 (2)

2000 (1)

M. Karlsson, J. Brentel, and P. A. Andrekson, J. Light-wave Technol. 18, 941 (2000).
[CrossRef]

Andrekson, P. A.

M. Karlsson, J. Brentel, and P. A. Andrekson, J. Light-wave Technol. 18, 941 (2000).
[CrossRef]

Bao, X.

D. S. Waddy, L. Chen, and X. Bao, IEEE Photon. Technol. Lett. 4, 468 (2002).
[CrossRef]

Brentel, J.

M. Karlsson, J. Brentel, and P. A. Andrekson, J. Light-wave Technol. 18, 941 (2000).
[CrossRef]

Chen, L.

D. S. Waddy, L. Chen, and X. Bao, IEEE Photon. Technol. Lett. 4, 468 (2002).
[CrossRef]

Chipman, R.

R. Chipman, in Handbook of Optics, M. Bass, E. W. Van Stryland, D. R. Williams, and W. L. Wolfe, eds. (Optical Society of America, Washington, D.C., 1994), Vol. II, pp. 22.1–22.22.

Karlsson, M.

M. Karlsson, J. Brentel, and P. A. Andrekson, J. Light-wave Technol. 18, 941 (2000).
[CrossRef]

Lagerwall, S. T.

S. T. Lagerwall, Ferroelectric and Antiferroelectric Liquid Crystals (Wiley–VCH, New York, 1999).
[CrossRef]

Leo, P. J.

Nagel, J.

C. D. Poole and J. Nagel, in Optical Fiber Telecommunications, I. P. Kaminow and T. L. Koch, eds. (Academic, San Diego, Calif., 1997), Vol. IIIA, pp. 114–161.
[CrossRef]

Peterson, D. L.

Poole, C. D.

C. D. Poole and J. Nagel, in Optical Fiber Telecommunications, I. P. Kaminow and T. L. Koch, eds. (Academic, San Diego, Calif., 1997), Vol. IIIA, pp. 114–161.
[CrossRef]

Rochford, K. B.

Simer, G.

Waddy, D. S.

D. S. Waddy, L. Chen, and X. Bao, IEEE Photon. Technol. Lett. 4, 468 (2002).
[CrossRef]

Ward, B. C.

Williams, P. A.

P. A. Williams, Optoelectronics Division, National Institute of Standards and Technology, Boulder, Colo. 80305 (personal communication, 2002).

IEEE Photon. Technol. Lett. (1)

D. S. Waddy, L. Chen, and X. Bao, IEEE Photon. Technol. Lett. 4, 468 (2002).
[CrossRef]

J. Light-wave Technol. (1)

M. Karlsson, J. Brentel, and P. A. Andrekson, J. Light-wave Technol. 18, 941 (2000).
[CrossRef]

Opt. Express (1)

Other (4)

R. Chipman, in Handbook of Optics, M. Bass, E. W. Van Stryland, D. R. Williams, and W. L. Wolfe, eds. (Optical Society of America, Washington, D.C., 1994), Vol. II, pp. 22.1–22.22.

S. T. Lagerwall, Ferroelectric and Antiferroelectric Liquid Crystals (Wiley–VCH, New York, 1999).
[CrossRef]

P. A. Williams, Optoelectronics Division, National Institute of Standards and Technology, Boulder, Colo. 80305 (personal communication, 2002).

C. D. Poole and J. Nagel, in Optical Fiber Telecommunications, I. P. Kaminow and T. L. Koch, eds. (Academic, San Diego, Calif., 1997), Vol. IIIA, pp. 114–161.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup of the wavelength-parallel polarimeter.

Fig. 2
Fig. 2

(a) Experimental data for measuring wavelength-dependent SOP produced by a 10-cm-long PMF. Each point represents a SOP at a different wavelength, with 0.4-nm wavelength spacing. (b) Measured data after the 10-cm-long PMF is replaced with two concatenated PMFs.

Fig. 3
Fig. 3

(a) Measured data for each of 256 wavelength components for 45° linearly polarized light. Each grid division represents 5° in both longitude and latitude of the Poincaré sphere. (b) Measured data for 90° polarized light, showing the measurement error that is due to wavelength dependence and other nonideal factors. (c) 90° measurement after correction. (d) Measurement error versus wavelength for 45° and 90° measurements, both before and after the correction algorithm has been applied.

Tables (1)

Tables Icon

Table 1 Truth Table for the FLC Switching Sequence

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

degrees of error=cos-1S1*S1+S2*S2+S3*S3/S0*S0/π*180°.

Metrics