Abstract

We have developed a two-dimensional (2D) Fourier-transform femtosecond spectroscopy technique for the visible spectral region. Three-pulse photon echo signals are generated in a phase-matched noncollinear four-wave mixing box geometry that employs a 3-kHz repetition-rate laser system and optical parametric amplification. Nonlinear signals are fully characterized in amplitude and phase by spectral interferometry. Unlike for previous setups, we achieve long-term phase stability by employing diffractive optics and interferometric accuracy of excitation-pulse time delays by using movable glass wedges. As an example of this technique, 2D correlation and relaxation spectra at 600 nm are shown for a solution of Nile Blue dye in acetonitrile.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Mukamel, Annu. Rev. Phys. Chem. 51, 691 (2000).
  2. D. M. Jonas, Annu. Rev. Phys. Chem. 54, 425 (2003).
  3. M. C. Asplund, M. T. Zanni, and R. M. Hochstrasser, Proc. Natl. Acad. Sci. USA 97, 8219 (2000).
    [CrossRef]
  4. L. Lepetit and M. Joffre, Opt. Lett. 21, 564 (1996).
    [CrossRef] [PubMed]
  5. N. Belabas and M. Joffre, Opt. Lett. 27, 2043 (2002).
    [CrossRef]
  6. O. Golonzka, M. Khalil, N. Demirdoven, and A. Tokmakoff, Phys. Rev. Lett. 86, 2154 (2001).
    [CrossRef] [PubMed]
  7. M. Khalil, N. Demirdoven, and A. Tokmakoff, Phys. Rev. Lett. 90, 047401 (2003).
    [CrossRef]
  8. J. D. Hybl, A. W. Albrecht, S. M. G. Faeder, and D. M. Jonas, Chem. Phys. Lett. 297, 307 (1998).
  9. J. D. Hybl, A. A. Ferro, and D. M. Jonas, J. Chem. Phys. 115, 6606 (2001).
  10. P. F. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, Science 300, 1553 (2003).
    [CrossRef] [PubMed]
  11. A. A. Maznev, K. A. Nelson, and T. A. Rogers, Opt. Lett. 23, 1319 (1998).
    [CrossRef]
  12. G. D. Goodno, G. Dadusc, and R. J. D. Miller, J. Opt. Soc. Am. B 15, 1791 (1998).
    [CrossRef]
  13. Q. H. Xu, Y. Z. Ma, I. V. Stiopkin, and G. R. Fleming, J. Chem. Phys. 116, 9333 (2002).
  14. L. Lepetit, G. Cheriaux, and M. Joffre, J. Opt. Soc. Am. B 12, 2467 (1995).
    [CrossRef]
  15. J. P. Likforman, M. Joffre, and V. Thierry-Mieg, Opt. Lett. 22, 1104 (1997).
    [CrossRef] [PubMed]
  16. M. F. Emde, W. P. deBoeij, M. S. Pshenichnikov, and D. A. Wiersma, Opt. Lett. 22, 1338 (1997).
    [CrossRef]
  17. S. M. Gallagher, A. W. Albrecht, T. D. Hybl, B. L. Landin, B. Rajaram, and D. M. Jonas, J. Opt. Soc. Am. B 15, 2338 (1998).
    [CrossRef]
  18. C. Dorrer, N. Belabas, J. P. Likforman, and M. Joffre, J. Opt. Soc. Am. B 17, 1795 (2000).
    [CrossRef]
  19. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
    [CrossRef]
  20. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford U. Press, New York, 1995).
  21. D. S. Larsen, K. Ohta, Q. H. Xu, M. Cyrier, and G. R. Fleming, J. Chem. Phys. 114, 8008 (2001).
  22. K. Ohta, D. S. Larsen, M. Yang, and G. R. Fleming, J. Chem. Phys. 114, 8020 (2001).

2003 (3)

D. M. Jonas, Annu. Rev. Phys. Chem. 54, 425 (2003).

M. Khalil, N. Demirdoven, and A. Tokmakoff, Phys. Rev. Lett. 90, 047401 (2003).
[CrossRef]

P. F. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, Science 300, 1553 (2003).
[CrossRef] [PubMed]

2002 (2)

Q. H. Xu, Y. Z. Ma, I. V. Stiopkin, and G. R. Fleming, J. Chem. Phys. 116, 9333 (2002).

N. Belabas and M. Joffre, Opt. Lett. 27, 2043 (2002).
[CrossRef]

2001 (4)

O. Golonzka, M. Khalil, N. Demirdoven, and A. Tokmakoff, Phys. Rev. Lett. 86, 2154 (2001).
[CrossRef] [PubMed]

J. D. Hybl, A. A. Ferro, and D. M. Jonas, J. Chem. Phys. 115, 6606 (2001).

D. S. Larsen, K. Ohta, Q. H. Xu, M. Cyrier, and G. R. Fleming, J. Chem. Phys. 114, 8008 (2001).

K. Ohta, D. S. Larsen, M. Yang, and G. R. Fleming, J. Chem. Phys. 114, 8020 (2001).

2000 (3)

S. Mukamel, Annu. Rev. Phys. Chem. 51, 691 (2000).

M. C. Asplund, M. T. Zanni, and R. M. Hochstrasser, Proc. Natl. Acad. Sci. USA 97, 8219 (2000).
[CrossRef]

C. Dorrer, N. Belabas, J. P. Likforman, and M. Joffre, J. Opt. Soc. Am. B 17, 1795 (2000).
[CrossRef]

1998 (4)

1997 (3)

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

J. P. Likforman, M. Joffre, and V. Thierry-Mieg, Opt. Lett. 22, 1104 (1997).
[CrossRef] [PubMed]

M. F. Emde, W. P. deBoeij, M. S. Pshenichnikov, and D. A. Wiersma, Opt. Lett. 22, 1338 (1997).
[CrossRef]

1996 (1)

1995 (1)

Albrecht, A. W.

J. D. Hybl, A. W. Albrecht, S. M. G. Faeder, and D. M. Jonas, Chem. Phys. Lett. 297, 307 (1998).

S. M. Gallagher, A. W. Albrecht, T. D. Hybl, B. L. Landin, B. Rajaram, and D. M. Jonas, J. Opt. Soc. Am. B 15, 2338 (1998).
[CrossRef]

Asplund, M. C.

M. C. Asplund, M. T. Zanni, and R. M. Hochstrasser, Proc. Natl. Acad. Sci. USA 97, 8219 (2000).
[CrossRef]

Belabas, N.

Cheriaux, G.

Cyrier, M.

D. S. Larsen, K. Ohta, Q. H. Xu, M. Cyrier, and G. R. Fleming, J. Chem. Phys. 114, 8008 (2001).

Dadusc, G.

deBoeij, W. P.

DeLong, K. W.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Demirdoven, N.

M. Khalil, N. Demirdoven, and A. Tokmakoff, Phys. Rev. Lett. 90, 047401 (2003).
[CrossRef]

O. Golonzka, M. Khalil, N. Demirdoven, and A. Tokmakoff, Phys. Rev. Lett. 86, 2154 (2001).
[CrossRef] [PubMed]

Dorrer, C.

Emde, M. F.

Faeder, S. M. G.

J. D. Hybl, A. W. Albrecht, S. M. G. Faeder, and D. M. Jonas, Chem. Phys. Lett. 297, 307 (1998).

Ferro, A. A.

J. D. Hybl, A. A. Ferro, and D. M. Jonas, J. Chem. Phys. 115, 6606 (2001).

Fittinghoff, D. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Fleming, G. R.

Q. H. Xu, Y. Z. Ma, I. V. Stiopkin, and G. R. Fleming, J. Chem. Phys. 116, 9333 (2002).

K. Ohta, D. S. Larsen, M. Yang, and G. R. Fleming, J. Chem. Phys. 114, 8020 (2001).

D. S. Larsen, K. Ohta, Q. H. Xu, M. Cyrier, and G. R. Fleming, J. Chem. Phys. 114, 8008 (2001).

Gallagher, S. M.

Golonzka, O.

O. Golonzka, M. Khalil, N. Demirdoven, and A. Tokmakoff, Phys. Rev. Lett. 86, 2154 (2001).
[CrossRef] [PubMed]

Goodno, G. D.

Hochstrasser, R. M.

M. C. Asplund, M. T. Zanni, and R. M. Hochstrasser, Proc. Natl. Acad. Sci. USA 97, 8219 (2000).
[CrossRef]

Hybl, J. D.

J. D. Hybl, A. A. Ferro, and D. M. Jonas, J. Chem. Phys. 115, 6606 (2001).

J. D. Hybl, A. W. Albrecht, S. M. G. Faeder, and D. M. Jonas, Chem. Phys. Lett. 297, 307 (1998).

Hybl, T. D.

Joffre, M.

Jonas, D. M.

D. M. Jonas, Annu. Rev. Phys. Chem. 54, 425 (2003).

J. D. Hybl, A. A. Ferro, and D. M. Jonas, J. Chem. Phys. 115, 6606 (2001).

J. D. Hybl, A. W. Albrecht, S. M. G. Faeder, and D. M. Jonas, Chem. Phys. Lett. 297, 307 (1998).

S. M. Gallagher, A. W. Albrecht, T. D. Hybl, B. L. Landin, B. Rajaram, and D. M. Jonas, J. Opt. Soc. Am. B 15, 2338 (1998).
[CrossRef]

Kane, D. J.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Keusters, D.

P. F. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, Science 300, 1553 (2003).
[CrossRef] [PubMed]

Khalil, M.

M. Khalil, N. Demirdoven, and A. Tokmakoff, Phys. Rev. Lett. 90, 047401 (2003).
[CrossRef]

O. Golonzka, M. Khalil, N. Demirdoven, and A. Tokmakoff, Phys. Rev. Lett. 86, 2154 (2001).
[CrossRef] [PubMed]

Krumbugel, M. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Landin, B. L.

Larsen, D. S.

D. S. Larsen, K. Ohta, Q. H. Xu, M. Cyrier, and G. R. Fleming, J. Chem. Phys. 114, 8008 (2001).

K. Ohta, D. S. Larsen, M. Yang, and G. R. Fleming, J. Chem. Phys. 114, 8020 (2001).

Lepetit, L.

Likforman, J. P.

Ma, Y. Z.

Q. H. Xu, Y. Z. Ma, I. V. Stiopkin, and G. R. Fleming, J. Chem. Phys. 116, 9333 (2002).

Maznev, A. A.

Miller, R. J. D.

Mukamel, S.

S. Mukamel, Annu. Rev. Phys. Chem. 51, 691 (2000).

S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford U. Press, New York, 1995).

Nelson, K. A.

Ohta, K.

D. S. Larsen, K. Ohta, Q. H. Xu, M. Cyrier, and G. R. Fleming, J. Chem. Phys. 114, 8008 (2001).

K. Ohta, D. S. Larsen, M. Yang, and G. R. Fleming, J. Chem. Phys. 114, 8020 (2001).

Pshenichnikov, M. S.

Rajaram, B.

Richman, B. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Rogers, T. A.

Stiopkin, I. V.

Q. H. Xu, Y. Z. Ma, I. V. Stiopkin, and G. R. Fleming, J. Chem. Phys. 116, 9333 (2002).

Suzaki, Y.

P. F. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, Science 300, 1553 (2003).
[CrossRef] [PubMed]

Sweetser, J. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Thierry-Mieg, V.

Tian, P. F.

P. F. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, Science 300, 1553 (2003).
[CrossRef] [PubMed]

Tokmakoff, A.

M. Khalil, N. Demirdoven, and A. Tokmakoff, Phys. Rev. Lett. 90, 047401 (2003).
[CrossRef]

O. Golonzka, M. Khalil, N. Demirdoven, and A. Tokmakoff, Phys. Rev. Lett. 86, 2154 (2001).
[CrossRef] [PubMed]

Trebino, R.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Warren, W. S.

P. F. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, Science 300, 1553 (2003).
[CrossRef] [PubMed]

Wiersma, D. A.

Xu, Q. H.

Q. H. Xu, Y. Z. Ma, I. V. Stiopkin, and G. R. Fleming, J. Chem. Phys. 116, 9333 (2002).

D. S. Larsen, K. Ohta, Q. H. Xu, M. Cyrier, and G. R. Fleming, J. Chem. Phys. 114, 8008 (2001).

Yang, M.

K. Ohta, D. S. Larsen, M. Yang, and G. R. Fleming, J. Chem. Phys. 114, 8020 (2001).

Zanni, M. T.

M. C. Asplund, M. T. Zanni, and R. M. Hochstrasser, Proc. Natl. Acad. Sci. USA 97, 8219 (2000).
[CrossRef]

Annu. Rev. Phys. Chem. (2)

S. Mukamel, Annu. Rev. Phys. Chem. 51, 691 (2000).

D. M. Jonas, Annu. Rev. Phys. Chem. 54, 425 (2003).

Chem. Phys. Lett. (1)

J. D. Hybl, A. W. Albrecht, S. M. G. Faeder, and D. M. Jonas, Chem. Phys. Lett. 297, 307 (1998).

J. Chem. Phys. (4)

J. D. Hybl, A. A. Ferro, and D. M. Jonas, J. Chem. Phys. 115, 6606 (2001).

Q. H. Xu, Y. Z. Ma, I. V. Stiopkin, and G. R. Fleming, J. Chem. Phys. 116, 9333 (2002).

D. S. Larsen, K. Ohta, Q. H. Xu, M. Cyrier, and G. R. Fleming, J. Chem. Phys. 114, 8008 (2001).

K. Ohta, D. S. Larsen, M. Yang, and G. R. Fleming, J. Chem. Phys. 114, 8020 (2001).

J. Opt. Soc. Am. B (4)

Opt. Lett. (5)

Phys. Rev. Lett. (2)

O. Golonzka, M. Khalil, N. Demirdoven, and A. Tokmakoff, Phys. Rev. Lett. 86, 2154 (2001).
[CrossRef] [PubMed]

M. Khalil, N. Demirdoven, and A. Tokmakoff, Phys. Rev. Lett. 90, 047401 (2003).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

M. C. Asplund, M. T. Zanni, and R. M. Hochstrasser, Proc. Natl. Acad. Sci. USA 97, 8219 (2000).
[CrossRef]

Rev. Sci. Instrum. (1)

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Science (1)

P. F. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, Science 300, 1553 (2003).
[CrossRef] [PubMed]

Other (1)

S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford U. Press, New York, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup. Two time-delayed parallel beams are focused onto a 30-groove/mm DO by a 20-cm lens. The positive and negative first diffraction orders emerge with high efficiency and provide excitation pulses 1–3 as well as the LO (4=LO) used for heterodyne detection. A spherical mirror (2f=50 cm) generates a 100-µm beam-diameter (1/e2 intensity level) image of the DO spot via a plane folding mirror inside the sample cell. Time delays (1 and 2) are introduced with interferometric precision by movable glass wedges with the required pulse orders and timing intervals τ and T (inset). Spectral interferometry between the attenuated LO and the emitted third-order signal field (dashed curves in the inset and dashed lines in the main figure) fully characterizes the response of the sample in amplitude and phase.

Fig. 2
Fig. 2

a, Spectral interferograms for Nile Blue dye in acetonitrile recorded for various coherence times τ and fixed population time T=0 fs. The high quality of the fringe patterns demonstrates the phase stability of the passively phase-locked setup. b, Five interference spectra for fixed τ=0 fs and T=0 fs (taken from different continuous scans within 30 min) show the high phase stability and repeatability, as fringe positions and intensities are reproducible.

Fig. 3
Fig. 3

2D Fourier-transform spectra for a, T=0 fs and b, T=100 fs in magnitude (top) and phase (bottom) at 595-nm excitation wavelength. Contour lines are drawn in steps of 10% for the magnitude and π/4 for the phase. With increasing T, loss of memory of the initial transition frequency is seen in the lines of constant phase leveling off and in the increased symmetry of the absolute value about the vertical axis. The maximum of the absolute value at T=100 fs is 60% of the peak value at T=0 fs. The vertical elongation of the magnitude indicates a time-dependent Stokes shift, i.e., motion of excited-state wave packets.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Sωτ,ωt,TFTexpiω0τ-iω0tR3τ,T,t

Metrics