Abstract

We explore the optical characteristics and fundamental limitations of one-dimensional (1D) photonic crystal (PhC) structures as means for improving the efficiency and power density of thermophotovoltaic (TPV) and microthermophotovoltaic (MTPV) devices. We analyze the optical performance of 1D PhCs with respect to photovoltaic diode efficiency and power density. Furthermore, we present an optimized dielectric stack design that exhibits a significantly wider stop band and yields better TPV system efficiency than a simple quarter-wave stack. The analysis is done for both TPV and MTPV devices by use of a unified modeling framework.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Zenker, A. Heinzel, G. Stollwerck, J. Ferber, and J. Luther, IEEE Trans. Electron. Devices 48, 367 (2001).
    [CrossRef]
  2. J. L. Pan, H. K. H. Choy, and C. G. Fonstad, IEEE Trans. Electron. Devices 47, 241 (2000).
    [CrossRef]
  3. P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988), pp. 118–123.
  4. J. N. Winn, Y. Fink, S. Fan, and J. D. Joannopoulos, Opt. Lett. 23, 1573 (1998).
    [CrossRef]
  5. C. Houck, J. Joines, and M. Kay, “A Genetic Algorithm for Function Optimization: a Matlab Implemenation,” (North Carolina State University, Raleigh, N.C., 1995).

2001 (1)

M. Zenker, A. Heinzel, G. Stollwerck, J. Ferber, and J. Luther, IEEE Trans. Electron. Devices 48, 367 (2001).
[CrossRef]

2000 (1)

J. L. Pan, H. K. H. Choy, and C. G. Fonstad, IEEE Trans. Electron. Devices 47, 241 (2000).
[CrossRef]

1998 (1)

Choy, H. K. H.

J. L. Pan, H. K. H. Choy, and C. G. Fonstad, IEEE Trans. Electron. Devices 47, 241 (2000).
[CrossRef]

Fan, S.

Ferber, J.

M. Zenker, A. Heinzel, G. Stollwerck, J. Ferber, and J. Luther, IEEE Trans. Electron. Devices 48, 367 (2001).
[CrossRef]

Fink, Y.

Fonstad, C. G.

J. L. Pan, H. K. H. Choy, and C. G. Fonstad, IEEE Trans. Electron. Devices 47, 241 (2000).
[CrossRef]

Heinzel, A.

M. Zenker, A. Heinzel, G. Stollwerck, J. Ferber, and J. Luther, IEEE Trans. Electron. Devices 48, 367 (2001).
[CrossRef]

Houck, C.

C. Houck, J. Joines, and M. Kay, “A Genetic Algorithm for Function Optimization: a Matlab Implemenation,” (North Carolina State University, Raleigh, N.C., 1995).

Joannopoulos, J. D.

Joines, J.

C. Houck, J. Joines, and M. Kay, “A Genetic Algorithm for Function Optimization: a Matlab Implemenation,” (North Carolina State University, Raleigh, N.C., 1995).

Kay, M.

C. Houck, J. Joines, and M. Kay, “A Genetic Algorithm for Function Optimization: a Matlab Implemenation,” (North Carolina State University, Raleigh, N.C., 1995).

Luther, J.

M. Zenker, A. Heinzel, G. Stollwerck, J. Ferber, and J. Luther, IEEE Trans. Electron. Devices 48, 367 (2001).
[CrossRef]

Pan, J. L.

J. L. Pan, H. K. H. Choy, and C. G. Fonstad, IEEE Trans. Electron. Devices 47, 241 (2000).
[CrossRef]

Stollwerck, G.

M. Zenker, A. Heinzel, G. Stollwerck, J. Ferber, and J. Luther, IEEE Trans. Electron. Devices 48, 367 (2001).
[CrossRef]

Winn, J. N.

Yeh, P.

P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988), pp. 118–123.

Zenker, M.

M. Zenker, A. Heinzel, G. Stollwerck, J. Ferber, and J. Luther, IEEE Trans. Electron. Devices 48, 367 (2001).
[CrossRef]

IEEE Trans. Electron. Devices (2)

M. Zenker, A. Heinzel, G. Stollwerck, J. Ferber, and J. Luther, IEEE Trans. Electron. Devices 48, 367 (2001).
[CrossRef]

J. L. Pan, H. K. H. Choy, and C. G. Fonstad, IEEE Trans. Electron. Devices 47, 241 (2000).
[CrossRef]

Opt. Lett. (1)

Other (2)

C. Houck, J. Joines, and M. Kay, “A Genetic Algorithm for Function Optimization: a Matlab Implemenation,” (North Carolina State University, Raleigh, N.C., 1995).

P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988), pp. 118–123.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

TPV system with a front-side dielectric stack filter (layers 1n), in which the thickness of the gap (layer 0) between the emitter (BB) and the dielectric stack is Lo. The PV diode extends to +.

Fig. 2
Fig. 2

Projected photonic band diagram for a 1D SiSiO2 quarter-wave stack for both polarizations (TE and TM). Light lines represent ω=1/µ1/2ky for both vacuum ε=ε0 and SiC ε=6.7ε0. Normal-incidence bandgap is designated as ΔωgN.

Fig. 3
Fig. 3

Transmittance at normal incidence for (a) MQWS and (b) GAOS. Layer thicknesses are given in Table 1.

Fig. 4
Fig. 4

Efficiency and power density versus the emitter temperature for a GaSb standard TPV system with an ideal cutoff filter, MQWS, GAOS, and without a filter.

Fig. 5
Fig. 5

Efficiency and power density versus vacuum gap for a GaSb MTPV system without filter and with MQWS for an emitter temperature of 1500 K.

Tables (1)

Tables Icon

Table 1 Dielectric Stack Layer Thicknesses (µm)

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Prad=00θ1cosθ sin θωexpω/kTBB-1×nBB2ω22π2c2Tr13ω,θdθdω-00θ3cosθ sin θωexpω-eV/kTPV-1×nPV2ω22π2c2Tr31ω,θdθdω,
PPV=eVωg0θ1cosθ sin θ1expω/kTBB-1×nBB2ω22π2c2Tr13ω,θdθdω-ωg0θ3cosθ sin θ1expω-eV/kTPV-1×nPV2ω22π2c2Tr31ω,θdθdω,
ηTPV=PPVPrad.

Metrics