Abstract

A lensless, coherent optical microscope is described that uses a version of phase-shifting digital holography (PSDH) in conjunction with a field backpropagation algorithm to form coherent images of transmission-type objects. The PSDH is implemented by use of only two reference waves, in contrast with the usual implementation that requires four quadrature phase-shifting reference waves. Therefore only two digital holograms need to be recorded, and the complexity of the microscopic system is reduced. Experimental results are presented that compare images generated from conventional Gabor digital holography, two-reference-wave PSDH, and conventional white-light microscopy.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Allaria, S. Brugioni, S. D. Nicola, P. Ferraro, S. Grilli, and R. Meucci, Opt. Commun. 215, 257 (2003).
    [CrossRef]
  2. M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, Cambridge, 1999).
    [CrossRef]
  3. M. H. Maleki and A. J. Devaney, Opt. Eng. 33, 3243 (1994).
    [CrossRef]
  4. D. Gabor and W. P. Goss, J. Opt. Soc. Am. 56, 849 (1966).
  5. R. W. Gerchberg and W. O. Saxton, Optik 35, 237 (1972).
  6. J. R. Fienup, Appl. Opt. 21, 2758 (1982).
    [CrossRef] [PubMed]
  7. T. Zhang and I. Yamaguchi, Opt. Lett. 23, 1221 (1998).
    [CrossRef]
  8. I. Yamaguchi, J. Kato, S. Ohta, and J. Mizuno, Appl. Opt. 40, 6177 (2001).
    [CrossRef]
  9. S. Lai and M. A. Neifeld, Opt. Commun. 178, 283 (2000).
    [CrossRef]
  10. S. Lai, B. King, and M. A. Neifeld, Opt. Commun. 173, 155 (2000).
    [CrossRef]
  11. C. Guo and L. Zhang, Opt. Lett. 27, 1687 (2002).
    [CrossRef]
  12. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).
  13. A. J. Devaney, Phys. Rev. Lett. 62, 2385 (1989).
    [CrossRef] [PubMed]
  14. A. J. Devaney and M. H. Maleki, J. Opt. Soc. Am. A 10, 1086 (1993).
    [CrossRef]

2003 (1)

E. Allaria, S. Brugioni, S. D. Nicola, P. Ferraro, S. Grilli, and R. Meucci, Opt. Commun. 215, 257 (2003).
[CrossRef]

2002 (1)

2001 (1)

2000 (2)

S. Lai and M. A. Neifeld, Opt. Commun. 178, 283 (2000).
[CrossRef]

S. Lai, B. King, and M. A. Neifeld, Opt. Commun. 173, 155 (2000).
[CrossRef]

1998 (1)

1994 (1)

M. H. Maleki and A. J. Devaney, Opt. Eng. 33, 3243 (1994).
[CrossRef]

1993 (1)

1989 (1)

A. J. Devaney, Phys. Rev. Lett. 62, 2385 (1989).
[CrossRef] [PubMed]

1982 (1)

1972 (1)

R. W. Gerchberg and W. O. Saxton, Optik 35, 237 (1972).

1966 (1)

Allaria, E.

E. Allaria, S. Brugioni, S. D. Nicola, P. Ferraro, S. Grilli, and R. Meucci, Opt. Commun. 215, 257 (2003).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, Cambridge, 1999).
[CrossRef]

Brugioni, S.

E. Allaria, S. Brugioni, S. D. Nicola, P. Ferraro, S. Grilli, and R. Meucci, Opt. Commun. 215, 257 (2003).
[CrossRef]

Devaney, A. J.

M. H. Maleki and A. J. Devaney, Opt. Eng. 33, 3243 (1994).
[CrossRef]

A. J. Devaney and M. H. Maleki, J. Opt. Soc. Am. A 10, 1086 (1993).
[CrossRef]

A. J. Devaney, Phys. Rev. Lett. 62, 2385 (1989).
[CrossRef] [PubMed]

Ferraro, P.

E. Allaria, S. Brugioni, S. D. Nicola, P. Ferraro, S. Grilli, and R. Meucci, Opt. Commun. 215, 257 (2003).
[CrossRef]

Fienup, J. R.

Gabor, D.

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton, Optik 35, 237 (1972).

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).

Goss, W. P.

Grilli, S.

E. Allaria, S. Brugioni, S. D. Nicola, P. Ferraro, S. Grilli, and R. Meucci, Opt. Commun. 215, 257 (2003).
[CrossRef]

Guo, C.

Kato, J.

King, B.

S. Lai, B. King, and M. A. Neifeld, Opt. Commun. 173, 155 (2000).
[CrossRef]

Lai, S.

S. Lai, B. King, and M. A. Neifeld, Opt. Commun. 173, 155 (2000).
[CrossRef]

S. Lai and M. A. Neifeld, Opt. Commun. 178, 283 (2000).
[CrossRef]

Maleki, M. H.

M. H. Maleki and A. J. Devaney, Opt. Eng. 33, 3243 (1994).
[CrossRef]

A. J. Devaney and M. H. Maleki, J. Opt. Soc. Am. A 10, 1086 (1993).
[CrossRef]

Meucci, R.

E. Allaria, S. Brugioni, S. D. Nicola, P. Ferraro, S. Grilli, and R. Meucci, Opt. Commun. 215, 257 (2003).
[CrossRef]

Mizuno, J.

Neifeld, M. A.

S. Lai, B. King, and M. A. Neifeld, Opt. Commun. 173, 155 (2000).
[CrossRef]

S. Lai and M. A. Neifeld, Opt. Commun. 178, 283 (2000).
[CrossRef]

Nicola, S. D.

E. Allaria, S. Brugioni, S. D. Nicola, P. Ferraro, S. Grilli, and R. Meucci, Opt. Commun. 215, 257 (2003).
[CrossRef]

Ohta, S.

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton, Optik 35, 237 (1972).

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, Cambridge, 1999).
[CrossRef]

Yamaguchi, I.

Zhang, L.

Zhang, T.

Appl. Opt. (2)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Opt. Commun. (3)

S. Lai and M. A. Neifeld, Opt. Commun. 178, 283 (2000).
[CrossRef]

S. Lai, B. King, and M. A. Neifeld, Opt. Commun. 173, 155 (2000).
[CrossRef]

E. Allaria, S. Brugioni, S. D. Nicola, P. Ferraro, S. Grilli, and R. Meucci, Opt. Commun. 215, 257 (2003).
[CrossRef]

Opt. Eng. (1)

M. H. Maleki and A. J. Devaney, Opt. Eng. 33, 3243 (1994).
[CrossRef]

Opt. Lett. (2)

Optik (1)

R. W. Gerchberg and W. O. Saxton, Optik 35, 237 (1972).

Phys. Rev. Lett. (1)

A. J. Devaney, Phys. Rev. Lett. 62, 2385 (1989).
[CrossRef] [PubMed]

Other (2)

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).

M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, Cambridge, 1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

Measured intensity data in a Ronchi ruling experiment: (a) scattered intensity, (b) total interference intensity with phase shift θ=0 in the reference beam, (c) total interference intensity with phase shift θ=π/2 in the reference beam.

Fig. 3
Fig. 3

Intensity image of a Ronchi ruling reconstructed by PSDH.

Fig. 4
Fig. 4

Three-dimensional view of the image in Fig. 3.

Fig. 5
Fig. 5

Conventional digital holographic image of a Ronchi ruling.

Fig. 6
Fig. 6

Intensity image of a Ronchi ruling through a conventional white-light microscope.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ψtρ;z0=A0 expiθexpikz0+ψρ;z0,
Itρ;z0=Irρ;z0+Isρ;z0+A0 exp-ikz0-iθψρ;z0+A0 expikz0+iθψ*ρ;z0,
D1ρ;z0=A0 exp-ikz0-iθψρ;z0+A0 expikz0+iθψ*ρ;z0.
D2ρ;z0=A0 exp-ikz0ψρ;z0+A0 expikz0ψ*ρ;z0.
ψρ;zp=12π2Kρ<kd2KρAKρ×expiKρ·ρ+γzp-z0,
AKρ=d2ρψρ;z0exp-iKρ·ρ.

Metrics