Abstract

An efficient and compact scheme for diode-pumped Nd:YLF laser wavelength conversion to 943 nm was demonstrated by use of difference-frequency mixing and stimulated Raman scattering. We believe that this is the highest conversion efficiency from the laser fundamental wavelength reported to date. It is shown that RbTiOPO4 crystals are capable of providing highly efficient frequency mixing as a nonlinear medium.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Wulfmeyer and C. Walther, Appl. Opt. 40, 5304 (2001).
    [CrossRef]
  2. V. Wulfmeyer and C. Walther, Appl. Opt. 40, 5321 (2001).
    [CrossRef]
  3. G. Ehret, A. Fix, V. Weiss, G. Poberaj, and T. Baumert, Appl. Phys. B 67, 427 (1998).
    [CrossRef]
  4. A. Yu. Dergachev, B. Pati, and P. F. Moulton, in Advanced Solid State Lasers, Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), p. 96.
  5. B. M. Walsh, N. P. Barnes, R. L. Hutcheson, and R. W. Equall, IEEE J. Quantum Electron. 37, 1203 (2001).
    [CrossRef]
  6. N. P. Barnes, B. M. Walsh, E. D. Filer, R. L. Hutcheson, and R. Equall, in Advanced Solid State Lasers, Vol. 68 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), p. 280.
  7. L. R. Tiour, S. V. Kuznetsov, and G. A. Pasmanik, Proc. SPIE 5260, 539 (2003).
    [CrossRef]

2003 (1)

L. R. Tiour, S. V. Kuznetsov, and G. A. Pasmanik, Proc. SPIE 5260, 539 (2003).
[CrossRef]

2001 (3)

V. Wulfmeyer and C. Walther, Appl. Opt. 40, 5304 (2001).
[CrossRef]

V. Wulfmeyer and C. Walther, Appl. Opt. 40, 5321 (2001).
[CrossRef]

B. M. Walsh, N. P. Barnes, R. L. Hutcheson, and R. W. Equall, IEEE J. Quantum Electron. 37, 1203 (2001).
[CrossRef]

1998 (1)

G. Ehret, A. Fix, V. Weiss, G. Poberaj, and T. Baumert, Appl. Phys. B 67, 427 (1998).
[CrossRef]

Barnes, N. P.

B. M. Walsh, N. P. Barnes, R. L. Hutcheson, and R. W. Equall, IEEE J. Quantum Electron. 37, 1203 (2001).
[CrossRef]

N. P. Barnes, B. M. Walsh, E. D. Filer, R. L. Hutcheson, and R. Equall, in Advanced Solid State Lasers, Vol. 68 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), p. 280.

Baumert, T.

G. Ehret, A. Fix, V. Weiss, G. Poberaj, and T. Baumert, Appl. Phys. B 67, 427 (1998).
[CrossRef]

Dergachev, A. Yu.

A. Yu. Dergachev, B. Pati, and P. F. Moulton, in Advanced Solid State Lasers, Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), p. 96.

Ehret, G.

G. Ehret, A. Fix, V. Weiss, G. Poberaj, and T. Baumert, Appl. Phys. B 67, 427 (1998).
[CrossRef]

Equall, R.

N. P. Barnes, B. M. Walsh, E. D. Filer, R. L. Hutcheson, and R. Equall, in Advanced Solid State Lasers, Vol. 68 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), p. 280.

Equall, R. W.

B. M. Walsh, N. P. Barnes, R. L. Hutcheson, and R. W. Equall, IEEE J. Quantum Electron. 37, 1203 (2001).
[CrossRef]

Filer, E. D.

N. P. Barnes, B. M. Walsh, E. D. Filer, R. L. Hutcheson, and R. Equall, in Advanced Solid State Lasers, Vol. 68 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), p. 280.

Fix, A.

G. Ehret, A. Fix, V. Weiss, G. Poberaj, and T. Baumert, Appl. Phys. B 67, 427 (1998).
[CrossRef]

Hutcheson, R. L.

B. M. Walsh, N. P. Barnes, R. L. Hutcheson, and R. W. Equall, IEEE J. Quantum Electron. 37, 1203 (2001).
[CrossRef]

N. P. Barnes, B. M. Walsh, E. D. Filer, R. L. Hutcheson, and R. Equall, in Advanced Solid State Lasers, Vol. 68 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), p. 280.

Kuznetsov, S. V.

L. R. Tiour, S. V. Kuznetsov, and G. A. Pasmanik, Proc. SPIE 5260, 539 (2003).
[CrossRef]

Moulton, P. F.

A. Yu. Dergachev, B. Pati, and P. F. Moulton, in Advanced Solid State Lasers, Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), p. 96.

Pasmanik, G. A.

L. R. Tiour, S. V. Kuznetsov, and G. A. Pasmanik, Proc. SPIE 5260, 539 (2003).
[CrossRef]

Pati, B.

A. Yu. Dergachev, B. Pati, and P. F. Moulton, in Advanced Solid State Lasers, Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), p. 96.

Poberaj, G.

G. Ehret, A. Fix, V. Weiss, G. Poberaj, and T. Baumert, Appl. Phys. B 67, 427 (1998).
[CrossRef]

Tiour, L. R.

L. R. Tiour, S. V. Kuznetsov, and G. A. Pasmanik, Proc. SPIE 5260, 539 (2003).
[CrossRef]

Walsh, B. M.

B. M. Walsh, N. P. Barnes, R. L. Hutcheson, and R. W. Equall, IEEE J. Quantum Electron. 37, 1203 (2001).
[CrossRef]

N. P. Barnes, B. M. Walsh, E. D. Filer, R. L. Hutcheson, and R. Equall, in Advanced Solid State Lasers, Vol. 68 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), p. 280.

Walther, C.

Weiss, V.

G. Ehret, A. Fix, V. Weiss, G. Poberaj, and T. Baumert, Appl. Phys. B 67, 427 (1998).
[CrossRef]

Wulfmeyer, V.

Appl. Opt. (2)

Appl. Phys. B (1)

G. Ehret, A. Fix, V. Weiss, G. Poberaj, and T. Baumert, Appl. Phys. B 67, 427 (1998).
[CrossRef]

IEEE J. Quantum Electron. (1)

B. M. Walsh, N. P. Barnes, R. L. Hutcheson, and R. W. Equall, IEEE J. Quantum Electron. 37, 1203 (2001).
[CrossRef]

Proc. SPIE (1)

L. R. Tiour, S. V. Kuznetsov, and G. A. Pasmanik, Proc. SPIE 5260, 539 (2003).
[CrossRef]

Other (2)

N. P. Barnes, B. M. Walsh, E. D. Filer, R. L. Hutcheson, and R. Equall, in Advanced Solid State Lasers, Vol. 68 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), p. 280.

A. Yu. Dergachev, B. Pati, and P. F. Moulton, in Advanced Solid State Lasers, Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), p. 96.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Laser and frequency converter setup. See text for details.

Fig. 2
Fig. 2

Pulse energy at 523 nm passed RTP crystals as a function of pulse input energy. , energy of the whole beam; , energy of the beam’s central part. The thin lines are the output linearly depending on input approximations without TPA.

Fig. 3
Fig. 3

DFM energy-conversion efficiency E943/E523 as a function of gain g=2χI0,0L at different energies of the seed wave at 1176 nm: 1–4, with two RTP crystals employed L=50 mm. 1, E1176=0; 2, E1176=5 µJ; 3, E1176=10 µJ; 4, E1176=750 µJ; 5, with three RTP crystals employed L=75 mm, E1176=750 µJ.

Metrics