Abstract

A widely tunable long-period grating in single-mode fiber is analyzed by use of an ultrathin cladding layer and higher-order cladding mode coupling. The numerical simulation shows that a 225-nm tuning range in the newly designed ultrathin long-period grating (cladding thickness, 35 µm) with third-order cladding mode coupling can be obtained. The analyzed tuning range is seven times wider than those of the other known long-period gratings. We believe that the proposed highly sensitive long-period grating will be widely used as a gain-flattening filter for ultrawideband optical amplifiers and fast tunable filters in dynamic optical communication systems.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Yin, K. W. Chung, and X. Zhu, Opt. Commun. 188, 301 (2001).
    [Crossref]
  2. S. Yin, O. Leonov, K. W. Chung, P. Kurtz, K. Reichard, H. Liu, and Q. Zhang, in Optical Fiber Communication Conference (OFC), Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), p. 23.
  3. A. Mori, H. Masuda, K. Shikano, and M. Shimizu, J. Lightwave Technol. 21, 1300 (2003).
    [Crossref]
  4. C. Tsao, Optical Fiber Waveguide Analysis (Oxford U. Press, Oxford, England, 1992).
  5. T. Erdogan, J. Opt. Soc. Am. A 14, 1760 (1997).
    [Crossref]
  6. T. Erdogan, J. Opt. Soc. Am. A 17, 2113 (2000).
    [Crossref]
  7. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhartia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
    [Crossref]

2003 (1)

2001 (1)

S. Yin, K. W. Chung, and X. Zhu, Opt. Commun. 188, 301 (2001).
[Crossref]

2000 (1)

1997 (1)

1996 (1)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhartia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[Crossref]

Bhartia, V.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhartia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[Crossref]

Chung, K. W.

S. Yin, K. W. Chung, and X. Zhu, Opt. Commun. 188, 301 (2001).
[Crossref]

S. Yin, O. Leonov, K. W. Chung, P. Kurtz, K. Reichard, H. Liu, and Q. Zhang, in Optical Fiber Communication Conference (OFC), Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), p. 23.

Erdogan, T.

T. Erdogan, J. Opt. Soc. Am. A 17, 2113 (2000).
[Crossref]

T. Erdogan, J. Opt. Soc. Am. A 14, 1760 (1997).
[Crossref]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhartia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[Crossref]

Judkins, J. B.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhartia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[Crossref]

Kurtz, P.

S. Yin, O. Leonov, K. W. Chung, P. Kurtz, K. Reichard, H. Liu, and Q. Zhang, in Optical Fiber Communication Conference (OFC), Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), p. 23.

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhartia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[Crossref]

Leonov, O.

S. Yin, O. Leonov, K. W. Chung, P. Kurtz, K. Reichard, H. Liu, and Q. Zhang, in Optical Fiber Communication Conference (OFC), Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), p. 23.

Liu, H.

S. Yin, O. Leonov, K. W. Chung, P. Kurtz, K. Reichard, H. Liu, and Q. Zhang, in Optical Fiber Communication Conference (OFC), Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), p. 23.

Masuda, H.

Mori, A.

Reichard, K.

S. Yin, O. Leonov, K. W. Chung, P. Kurtz, K. Reichard, H. Liu, and Q. Zhang, in Optical Fiber Communication Conference (OFC), Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), p. 23.

Shikano, K.

Shimizu, M.

Sipe, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhartia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[Crossref]

Tsao, C.

C. Tsao, Optical Fiber Waveguide Analysis (Oxford U. Press, Oxford, England, 1992).

Vengsarkar, A. M.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhartia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[Crossref]

Yin, S.

S. Yin, K. W. Chung, and X. Zhu, Opt. Commun. 188, 301 (2001).
[Crossref]

S. Yin, O. Leonov, K. W. Chung, P. Kurtz, K. Reichard, H. Liu, and Q. Zhang, in Optical Fiber Communication Conference (OFC), Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), p. 23.

Zhang, Q.

S. Yin, O. Leonov, K. W. Chung, P. Kurtz, K. Reichard, H. Liu, and Q. Zhang, in Optical Fiber Communication Conference (OFC), Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), p. 23.

Zhu, X.

S. Yin, K. W. Chung, and X. Zhu, Opt. Commun. 188, 301 (2001).
[Crossref]

J. Lightwave Technol. (2)

A. Mori, H. Masuda, K. Shikano, and M. Shimizu, J. Lightwave Technol. 21, 1300 (2003).
[Crossref]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhartia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[Crossref]

J. Opt. Soc. Am. A (2)

Opt. Commun. (1)

S. Yin, K. W. Chung, and X. Zhu, Opt. Commun. 188, 301 (2001).
[Crossref]

Other (2)

S. Yin, O. Leonov, K. W. Chung, P. Kurtz, K. Reichard, H. Liu, and Q. Zhang, in Optical Fiber Communication Conference (OFC), Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), p. 23.

C. Tsao, Optical Fiber Waveguide Analysis (Oxford U. Press, Oxford, England, 1992).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Effective refractive indices of the cladding modes. The surrounding medium is assumed to be air (n3=1.00). (a) Standard LPG (cladding diameter, D=125 µm; m=115 in steps of 2). (b) Ultrathin LPG (D=35 µm; m=19 in steps of 2).

Fig. 2
Fig. 2

Transmission spectrum variation: (a) ultrathin LPG with first-order cladding mode coupling (D=35 µm, m=1), a1=2.63 µm, Δ=0.55%, Λ=503 µm, N=55, Δn=3.6×10-4; (b) ultrathin LPG with third-order cladding mode coupling (D=35 µm, m=3), a1=2.63 µm, Δ=0.55%, Λ=261 µm, N=52, Δn=3.6×10-4.

Fig. 3
Fig. 3

Resonant wavelength shift with respect to the surrounding refractive-index variation.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

u2JK+σ1σ2u21u32n22a1a2pνa2-Kqνa2+Jrνa2- 1u2sνa2u2n22n32JK+σ1σ2u21u32n12a1a2pνa2- n32n12Kqνa2+Jrνa2-n22n12u2sνa2=σ1σ2-uu32n22a2J-u21n12a1Kpνa2+u32n12a2qνa2+ u21n12a1rνa2u2u32a2J-u21n32n22a1Kpνa2- u32a2qνa2-u21a1rνa2.     
σ1=iνneff-cl/Z0,
σ2=iνneff-clZ0,
u21=1u22-1u12,
u32=1w32+1u22,
ui2=2π/λ2ni2-neff-cl2,  i1,2,
w32=2π/λ2neff-cl2-n32,
J=Jνu1a1u1Jνu1a1,
K=Kνw3a2w3Kνw3a2,
pνr=Jνu2rYνu2a1-Jνu2a1Yνu2r,
qνr=Jνu2rYνu2a1-Jνu2a1Yνu2r,
rνr=Jνu2rYνu2a1-Jνu2a1Yνu2r,
sνr=Jνu2rYνu2a1-Jνu2a1Yνu2r.
λp=neff-co-neff-clΛ,
V1-bJ1V1-bJ0V1-b=VbK1VbK0Vb,

Metrics