Abstract

A new design is presented for Bragg fibers that allows low-loss propagation for linearly polarized light. Predictions based on a simple ray model show that approximately doubling the thickness of the first wall layer results in low losses at TM-like boundaries while keeping TE-like boundary losses manageable. This contrasts sharply with conventional quarter-wave designs that are extremely low loss for TE01 modes but very high loss for linear polarization. We fabricate Bragg fibers based on this design concept in a Si/SiO2 system and verify experimentally that they propagate linearly polarized light with losses less than 6 dB/cm over a 60-nm spectral range.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Yeh and A. Yariv, J. Opt. Soc. Am. 68, 1196 (1978).
  2. N. J. Doran and K. J. Blow, IEEE J. Lightwave Technol. LT-1, 588 (1983).
    [CrossRef]
  3. Y. Xu, R. K. Lee, and A. Yariv, Opt. Lett. 25, 1756 (2000).
    [CrossRef]
  4. S. G. Johnson, M. Ibanescu, M. Skorobogatly, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, Opt. Express 9, 748 (2001), especially p. 759, http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  5. A. Argyros, Opt. Express 10, 1411 (2002), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  6. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).
  7. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1965).

2002 (1)

2001 (1)

S. G. Johnson, M. Ibanescu, M. Skorobogatly, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, Opt. Express 9, 748 (2001), especially p. 759, http://www.opticsexpress.org .
[CrossRef] [PubMed]

2000 (1)

1983 (1)

N. J. Doran and K. J. Blow, IEEE J. Lightwave Technol. LT-1, 588 (1983).
[CrossRef]

1978 (1)

Argyros, A.

Blow, K. J.

N. J. Doran and K. J. Blow, IEEE J. Lightwave Technol. LT-1, 588 (1983).
[CrossRef]

Doran, N. J.

N. J. Doran and K. J. Blow, IEEE J. Lightwave Technol. LT-1, 588 (1983).
[CrossRef]

Engeness, T. D.

S. G. Johnson, M. Ibanescu, M. Skorobogatly, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, Opt. Express 9, 748 (2001), especially p. 759, http://www.opticsexpress.org .
[CrossRef] [PubMed]

Fink, Y.

S. G. Johnson, M. Ibanescu, M. Skorobogatly, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, Opt. Express 9, 748 (2001), especially p. 759, http://www.opticsexpress.org .
[CrossRef] [PubMed]

Ibanescu, M.

S. G. Johnson, M. Ibanescu, M. Skorobogatly, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, Opt. Express 9, 748 (2001), especially p. 759, http://www.opticsexpress.org .
[CrossRef] [PubMed]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1965).

Jacobs, S. A.

S. G. Johnson, M. Ibanescu, M. Skorobogatly, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, Opt. Express 9, 748 (2001), especially p. 759, http://www.opticsexpress.org .
[CrossRef] [PubMed]

Joannopoulos, J. D.

S. G. Johnson, M. Ibanescu, M. Skorobogatly, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, Opt. Express 9, 748 (2001), especially p. 759, http://www.opticsexpress.org .
[CrossRef] [PubMed]

Johnson, S. G.

S. G. Johnson, M. Ibanescu, M. Skorobogatly, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, Opt. Express 9, 748 (2001), especially p. 759, http://www.opticsexpress.org .
[CrossRef] [PubMed]

Lee, R. K.

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).

Skorobogatly, M.

S. G. Johnson, M. Ibanescu, M. Skorobogatly, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, Opt. Express 9, 748 (2001), especially p. 759, http://www.opticsexpress.org .
[CrossRef] [PubMed]

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).

Soljacic, M.

S. G. Johnson, M. Ibanescu, M. Skorobogatly, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, Opt. Express 9, 748 (2001), especially p. 759, http://www.opticsexpress.org .
[CrossRef] [PubMed]

Weisberg, O.

S. G. Johnson, M. Ibanescu, M. Skorobogatly, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, Opt. Express 9, 748 (2001), especially p. 759, http://www.opticsexpress.org .
[CrossRef] [PubMed]

Xu, Y.

Yariv, A.

Yeh, P.

IEEE J. Lightwave Technol. (1)

N. J. Doran and K. J. Blow, IEEE J. Lightwave Technol. LT-1, 588 (1983).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Express (2)

S. G. Johnson, M. Ibanescu, M. Skorobogatly, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, Opt. Express 9, 748 (2001), especially p. 759, http://www.opticsexpress.org .
[CrossRef] [PubMed]

A. Argyros, Opt. Express 10, 1411 (2002), http://www.opticsexpress.org .
[CrossRef] [PubMed]

Opt. Lett. (1)

Other (2)

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).

J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1965).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Simple ray diagram used to derive optimum layer thicknesses for a large-diameter core surrounded by a multilayer reflecting stack: (a) refractions and reflections for layer 1, (b) for all other layers.

Fig. 2
Fig. 2

Numerical computation of the fundamental mode amplitude profiles of a 10-µm-wide slab waveguide consisting of an air core enclosed by an Si/SiO2 Bragg stack for (a) TE polarization and (b) TM polarization. Odd-numbered layers are Si (n=3.5); even-numbered layers are SiO2 (n=1.45). Layer thicknesses are 0.219 µm for layer 1, 0.357 µm for SiO2 layers, and 0.112 µm for other Si layers.

Fig. 3
Fig. 3

Scanning electron micrograph of a fabricated Bragg fiber.

Fig. 4
Fig. 4

Measured propagation loss versus wavelength for the Bragg fiber shown in Fig. 3.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E0E0=-sini-rsini+r
E0E0=-tani-rtani+r
k0l=2k0n1s+2m+1+jπ,
t1=j+2m+1λ0 cos θc4sin θc-n1,
t1=λ04n12-1TEλ02n12-1TM,
ti=λ04ni2-1    i>1.

Metrics