Abstract

We have constructed and characterized several optical microring resonators with scale sizes of the order of 10 µm. These devices are intended to serve as building blocks for engineerable linear and nonlinear photonic media. Light is guided vertically by an epitaxially grown structure and transversely by deeply etched air-clad sidewalls. We report on the spectral phase transfer characteristics of such resonators. We also report the observation of a π-rad Kerr nonlinear phase shift accumulated in a single compact ring resonator evidenced by all-optical switching between output ports of a resonator-enhanced Mach–Zehnder interferometer.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. E. Little and S. T. Chun, Opt. Photon. News 11(11), 24 (2000).
    [CrossRef]
  2. R. Grover, V. Van, T. A. Ibrahim, P. P. Absil, L. C. Calhoun, F. G. Johnson, J. V. Hryniewicz, and P.-T. Ho, J. Lightwave Technol. 20, 900 (2002).
    [CrossRef]
  3. C. K. Madsen and J. H. Zhao, Optical Fiber Design and Analysis: a Signal Processing Approach (Wiley, New York, 1999).
    [CrossRef]
  4. G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, IEEE J. Quantum Electron. 37, 525 (2001).
    [CrossRef]
  5. S. Blair and Y. Chen, Appl. Opt. 40, 570 (2001).
    [CrossRef]
  6. R. W. Boyd and J. E. Heebner, Appl. Opt. 40, 5742 (2001).
    [CrossRef]
  7. J. E. Heebner, R. W. Boyd, and Q. Park, J. Opt. Soc. Am. B 19, 722 (2002).
    [CrossRef]
  8. J. E. Heebner and R. W. Boyd, SPIE Proc. 4969, 185 (2003).
    [CrossRef]
  9. T. A. Ibrahim, V. Van, and P.-T. Ho, Opt. Lett. 27, 803 (2002).
    [CrossRef]
  10. V. Mizrahi, K. W. DeLong, G. I. Stegeman, M. A. Saifi, and M. J. Andrejco, Opt. Lett. 14, 1140 (1989).
    [CrossRef] [PubMed]
  11. J. E. Heebner and R. W. Boyd, Opt. Lett. 24, 847 (1999).
    [CrossRef]
  12. R. Grover, T. A. Ibrahim, T. N. Ding, Y. Leng, L.-C. Kuo, S. Kanakaraju, K. Amarnath, L. C. Calhoun, and P.-T. Ho, IEEE Photon. Technol. Lett. 15, 1082 (2003).
    [CrossRef]
  13. S. T. Ho, C. E. Soccolich, M. N. Islam, W. S. Hobson, A. F. J. Levi, and R. E. Slusher, Appl. Phys. Lett. 59, 2558 (1991).
    [CrossRef]
  14. A. Villeneuve, C. C. Yang, P. G. J. Wigley, G. I. Stegeman, J. S. Aitchison, and C. N. Ironside, Appl. Phys. Lett. 61, 147 (1992).
    [CrossRef]

2003 (2)

J. E. Heebner and R. W. Boyd, SPIE Proc. 4969, 185 (2003).
[CrossRef]

R. Grover, T. A. Ibrahim, T. N. Ding, Y. Leng, L.-C. Kuo, S. Kanakaraju, K. Amarnath, L. C. Calhoun, and P.-T. Ho, IEEE Photon. Technol. Lett. 15, 1082 (2003).
[CrossRef]

2002 (3)

T. A. Ibrahim, V. Van, and P.-T. Ho, Opt. Lett. 27, 803 (2002).
[CrossRef]

J. E. Heebner, R. W. Boyd, and Q. Park, J. Opt. Soc. Am. B 19, 722 (2002).
[CrossRef]

R. Grover, V. Van, T. A. Ibrahim, P. P. Absil, L. C. Calhoun, F. G. Johnson, J. V. Hryniewicz, and P.-T. Ho, J. Lightwave Technol. 20, 900 (2002).
[CrossRef]

2001 (3)

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, IEEE J. Quantum Electron. 37, 525 (2001).
[CrossRef]

S. Blair and Y. Chen, Appl. Opt. 40, 570 (2001).
[CrossRef]

R. W. Boyd and J. E. Heebner, Appl. Opt. 40, 5742 (2001).
[CrossRef]

2000 (1)

B. E. Little and S. T. Chun, Opt. Photon. News 11(11), 24 (2000).
[CrossRef]

1999 (1)

1992 (1)

A. Villeneuve, C. C. Yang, P. G. J. Wigley, G. I. Stegeman, J. S. Aitchison, and C. N. Ironside, Appl. Phys. Lett. 61, 147 (1992).
[CrossRef]

1991 (1)

S. T. Ho, C. E. Soccolich, M. N. Islam, W. S. Hobson, A. F. J. Levi, and R. E. Slusher, Appl. Phys. Lett. 59, 2558 (1991).
[CrossRef]

1989 (1)

Absil, P. P.

R. Grover, V. Van, T. A. Ibrahim, P. P. Absil, L. C. Calhoun, F. G. Johnson, J. V. Hryniewicz, and P.-T. Ho, J. Lightwave Technol. 20, 900 (2002).
[CrossRef]

Aitchison, J. S.

A. Villeneuve, C. C. Yang, P. G. J. Wigley, G. I. Stegeman, J. S. Aitchison, and C. N. Ironside, Appl. Phys. Lett. 61, 147 (1992).
[CrossRef]

Amarnath, K.

R. Grover, T. A. Ibrahim, T. N. Ding, Y. Leng, L.-C. Kuo, S. Kanakaraju, K. Amarnath, L. C. Calhoun, and P.-T. Ho, IEEE Photon. Technol. Lett. 15, 1082 (2003).
[CrossRef]

Andrejco, M. J.

Blair, S.

Boyd, R. W.

Calhoun, L. C.

R. Grover, T. A. Ibrahim, T. N. Ding, Y. Leng, L.-C. Kuo, S. Kanakaraju, K. Amarnath, L. C. Calhoun, and P.-T. Ho, IEEE Photon. Technol. Lett. 15, 1082 (2003).
[CrossRef]

R. Grover, V. Van, T. A. Ibrahim, P. P. Absil, L. C. Calhoun, F. G. Johnson, J. V. Hryniewicz, and P.-T. Ho, J. Lightwave Technol. 20, 900 (2002).
[CrossRef]

Chen, Y.

Chun, S. T.

B. E. Little and S. T. Chun, Opt. Photon. News 11(11), 24 (2000).
[CrossRef]

DeLong, K. W.

Ding, T. N.

R. Grover, T. A. Ibrahim, T. N. Ding, Y. Leng, L.-C. Kuo, S. Kanakaraju, K. Amarnath, L. C. Calhoun, and P.-T. Ho, IEEE Photon. Technol. Lett. 15, 1082 (2003).
[CrossRef]

Eggleton, B. J.

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, IEEE J. Quantum Electron. 37, 525 (2001).
[CrossRef]

Grover, R.

R. Grover, T. A. Ibrahim, T. N. Ding, Y. Leng, L.-C. Kuo, S. Kanakaraju, K. Amarnath, L. C. Calhoun, and P.-T. Ho, IEEE Photon. Technol. Lett. 15, 1082 (2003).
[CrossRef]

R. Grover, V. Van, T. A. Ibrahim, P. P. Absil, L. C. Calhoun, F. G. Johnson, J. V. Hryniewicz, and P.-T. Ho, J. Lightwave Technol. 20, 900 (2002).
[CrossRef]

Heebner, J. E.

Ho, P.-T.

R. Grover, T. A. Ibrahim, T. N. Ding, Y. Leng, L.-C. Kuo, S. Kanakaraju, K. Amarnath, L. C. Calhoun, and P.-T. Ho, IEEE Photon. Technol. Lett. 15, 1082 (2003).
[CrossRef]

T. A. Ibrahim, V. Van, and P.-T. Ho, Opt. Lett. 27, 803 (2002).
[CrossRef]

R. Grover, V. Van, T. A. Ibrahim, P. P. Absil, L. C. Calhoun, F. G. Johnson, J. V. Hryniewicz, and P.-T. Ho, J. Lightwave Technol. 20, 900 (2002).
[CrossRef]

Ho, S. T.

S. T. Ho, C. E. Soccolich, M. N. Islam, W. S. Hobson, A. F. J. Levi, and R. E. Slusher, Appl. Phys. Lett. 59, 2558 (1991).
[CrossRef]

Hobson, W. S.

S. T. Ho, C. E. Soccolich, M. N. Islam, W. S. Hobson, A. F. J. Levi, and R. E. Slusher, Appl. Phys. Lett. 59, 2558 (1991).
[CrossRef]

Hryniewicz, J. V.

R. Grover, V. Van, T. A. Ibrahim, P. P. Absil, L. C. Calhoun, F. G. Johnson, J. V. Hryniewicz, and P.-T. Ho, J. Lightwave Technol. 20, 900 (2002).
[CrossRef]

Ibrahim, T. A.

R. Grover, T. A. Ibrahim, T. N. Ding, Y. Leng, L.-C. Kuo, S. Kanakaraju, K. Amarnath, L. C. Calhoun, and P.-T. Ho, IEEE Photon. Technol. Lett. 15, 1082 (2003).
[CrossRef]

T. A. Ibrahim, V. Van, and P.-T. Ho, Opt. Lett. 27, 803 (2002).
[CrossRef]

R. Grover, V. Van, T. A. Ibrahim, P. P. Absil, L. C. Calhoun, F. G. Johnson, J. V. Hryniewicz, and P.-T. Ho, J. Lightwave Technol. 20, 900 (2002).
[CrossRef]

Ironside, C. N.

A. Villeneuve, C. C. Yang, P. G. J. Wigley, G. I. Stegeman, J. S. Aitchison, and C. N. Ironside, Appl. Phys. Lett. 61, 147 (1992).
[CrossRef]

Islam, M. N.

S. T. Ho, C. E. Soccolich, M. N. Islam, W. S. Hobson, A. F. J. Levi, and R. E. Slusher, Appl. Phys. Lett. 59, 2558 (1991).
[CrossRef]

Johnson, F. G.

R. Grover, V. Van, T. A. Ibrahim, P. P. Absil, L. C. Calhoun, F. G. Johnson, J. V. Hryniewicz, and P.-T. Ho, J. Lightwave Technol. 20, 900 (2002).
[CrossRef]

Kanakaraju, S.

R. Grover, T. A. Ibrahim, T. N. Ding, Y. Leng, L.-C. Kuo, S. Kanakaraju, K. Amarnath, L. C. Calhoun, and P.-T. Ho, IEEE Photon. Technol. Lett. 15, 1082 (2003).
[CrossRef]

Kuo, L.-C.

R. Grover, T. A. Ibrahim, T. N. Ding, Y. Leng, L.-C. Kuo, S. Kanakaraju, K. Amarnath, L. C. Calhoun, and P.-T. Ho, IEEE Photon. Technol. Lett. 15, 1082 (2003).
[CrossRef]

Leng, Y.

R. Grover, T. A. Ibrahim, T. N. Ding, Y. Leng, L.-C. Kuo, S. Kanakaraju, K. Amarnath, L. C. Calhoun, and P.-T. Ho, IEEE Photon. Technol. Lett. 15, 1082 (2003).
[CrossRef]

Lenz, G.

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, IEEE J. Quantum Electron. 37, 525 (2001).
[CrossRef]

Levi, A. F. J.

S. T. Ho, C. E. Soccolich, M. N. Islam, W. S. Hobson, A. F. J. Levi, and R. E. Slusher, Appl. Phys. Lett. 59, 2558 (1991).
[CrossRef]

Little, B. E.

B. E. Little and S. T. Chun, Opt. Photon. News 11(11), 24 (2000).
[CrossRef]

Madsen, C. K.

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, IEEE J. Quantum Electron. 37, 525 (2001).
[CrossRef]

C. K. Madsen and J. H. Zhao, Optical Fiber Design and Analysis: a Signal Processing Approach (Wiley, New York, 1999).
[CrossRef]

Mizrahi, V.

Park, Q.

Saifi, M. A.

Slusher, R. E.

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, IEEE J. Quantum Electron. 37, 525 (2001).
[CrossRef]

S. T. Ho, C. E. Soccolich, M. N. Islam, W. S. Hobson, A. F. J. Levi, and R. E. Slusher, Appl. Phys. Lett. 59, 2558 (1991).
[CrossRef]

Soccolich, C. E.

S. T. Ho, C. E. Soccolich, M. N. Islam, W. S. Hobson, A. F. J. Levi, and R. E. Slusher, Appl. Phys. Lett. 59, 2558 (1991).
[CrossRef]

Stegeman, G. I.

A. Villeneuve, C. C. Yang, P. G. J. Wigley, G. I. Stegeman, J. S. Aitchison, and C. N. Ironside, Appl. Phys. Lett. 61, 147 (1992).
[CrossRef]

V. Mizrahi, K. W. DeLong, G. I. Stegeman, M. A. Saifi, and M. J. Andrejco, Opt. Lett. 14, 1140 (1989).
[CrossRef] [PubMed]

Van, V.

T. A. Ibrahim, V. Van, and P.-T. Ho, Opt. Lett. 27, 803 (2002).
[CrossRef]

R. Grover, V. Van, T. A. Ibrahim, P. P. Absil, L. C. Calhoun, F. G. Johnson, J. V. Hryniewicz, and P.-T. Ho, J. Lightwave Technol. 20, 900 (2002).
[CrossRef]

Villeneuve, A.

A. Villeneuve, C. C. Yang, P. G. J. Wigley, G. I. Stegeman, J. S. Aitchison, and C. N. Ironside, Appl. Phys. Lett. 61, 147 (1992).
[CrossRef]

Wigley, P. G. J.

A. Villeneuve, C. C. Yang, P. G. J. Wigley, G. I. Stegeman, J. S. Aitchison, and C. N. Ironside, Appl. Phys. Lett. 61, 147 (1992).
[CrossRef]

Yang, C. C.

A. Villeneuve, C. C. Yang, P. G. J. Wigley, G. I. Stegeman, J. S. Aitchison, and C. N. Ironside, Appl. Phys. Lett. 61, 147 (1992).
[CrossRef]

Zhao, J. H.

C. K. Madsen and J. H. Zhao, Optical Fiber Design and Analysis: a Signal Processing Approach (Wiley, New York, 1999).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

S. T. Ho, C. E. Soccolich, M. N. Islam, W. S. Hobson, A. F. J. Levi, and R. E. Slusher, Appl. Phys. Lett. 59, 2558 (1991).
[CrossRef]

A. Villeneuve, C. C. Yang, P. G. J. Wigley, G. I. Stegeman, J. S. Aitchison, and C. N. Ironside, Appl. Phys. Lett. 61, 147 (1992).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, IEEE J. Quantum Electron. 37, 525 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

R. Grover, T. A. Ibrahim, T. N. Ding, Y. Leng, L.-C. Kuo, S. Kanakaraju, K. Amarnath, L. C. Calhoun, and P.-T. Ho, IEEE Photon. Technol. Lett. 15, 1082 (2003).
[CrossRef]

J. Lightwave Technol. (1)

R. Grover, V. Van, T. A. Ibrahim, P. P. Absil, L. C. Calhoun, F. G. Johnson, J. V. Hryniewicz, and P.-T. Ho, J. Lightwave Technol. 20, 900 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (3)

Opt. Photon. News (1)

B. E. Little and S. T. Chun, Opt. Photon. News 11(11), 24 (2000).
[CrossRef]

SPIE Proc. (1)

J. E. Heebner and R. W. Boyd, SPIE Proc. 4969, 185 (2003).
[CrossRef]

Other (1)

C. K. Madsen and J. H. Zhao, Optical Fiber Design and Analysis: a Signal Processing Approach (Wiley, New York, 1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Design of the resonator structures investigated in this work. The vertical structure is formed by molecular-beam epitaxy, and the horizontal structure by nanolithography. All dimensions are in micrometers.

Fig. 2
Fig. 2

Procedure used to fabricate the microresonators. MBE, molecular-beam epitaxy; RIE, reactive-ion etch; e-beam, electron-beam.

Fig. 3
Fig. 3

Scanning electron microscopy images of (a) an add–drop ring resonator and (b) an all-pass ring resonator coupled to one arm of a Mach–Zehnder interferometer.

Fig. 4
Fig. 4

Measured transmission spectrum of the microresonator shown in Fig. 3(a) with a theoretical fit.

Fig. 5
Fig. 5

Measured transmission spectrum (left axis) of the device shown in Fig. 3(b) with a theoretical fit. The resonator-induced phase shift as inferred from the interferogram is also shown in the plot (right axis).

Fig. 6
Fig. 6

Demonstration of all-optical switching between ports of a Mach–Zehnder interferometer resulting from the accumulation of a π-rad phase shift in a ring resonator [device shown in Fig. 3(b)].

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T=r22-2r1r2 cos ϕ+r121-2r1r2 cos ϕ+r12r22,
Φ=π+ϕ+2 arctanr sin ϕ1-r cos ϕ.
PthresholdπλAeff2n2LF2,

Metrics