Abstract

We show theoretically that the frequency shifts that result from phase-mismatched cascaded processes under conditions of strong group-velocity mismatch can be significantly enhanced by local control of the nonlinearity with propagation. This control is possible with continuous variation of the poling period of quasi-phase-matched structures and can allow one to avoid saturation of the frequency shift. We theoretically demonstrate its applicability to high-quality, efficient frequency shifting of infrared pulses.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. I. Stegeman, R. Schiek, L. Torner, W. Torruellas, Y. Baek, D. Baboiu, Z. Wang, E. Van Stryland, D. J. Hagan, and G. Assanto, in Novel Optical Materials and Applications, I. C. Khoo, F. Simoni, and C. Umeton, eds. (Wiley, New York, 1997), Chap. 2, pp. 49–76.
  2. A. V. Buryak, P. Di Trapani, D. V. Skryabin, and S. Trillo, Phys. Rep. 370, 63 (2002).
    [CrossRef]
  3. K. Beckwitt, F. W. Wise, L. Qian, L. A. Walker, and E. Canto-Said, Opt. Lett. 26, 1696 (2001).
    [CrossRef]
  4. F. Wise, L. Qian, and X. Liu, J. Nonlinear Opt. Phys. Mater. 11, 317 (2002).
    [CrossRef]
  5. F. Ö. Ilday and F. W. Wise, J. Opt. Soc. Am. B 19, 470 (2002).
    [CrossRef]
  6. C. R. Menyuk, R. Schiek, and L. Torner, J. Opt. Soc. Am. B 11, 2434 (1994).
    [CrossRef]
  7. F. Ö. Ilday, K. Beckwitt, Y.-F. Chen, H. Lim, and F. W. Wise, J. Opt. Soc. Am. B 21, 376 (2004).
    [CrossRef]
  8. A. A. Kanashov and A. M. Rubenchik, Physica D 4, 122 (1981).
    [CrossRef]
  9. J. P. Torres and L. Torner, Opt. Quantum Electron. 29, 757 (1997).
    [CrossRef]
  10. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1995).
  11. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
    [CrossRef]
  12. A. M. Schober, G. Imeshev, and M. M. Fejer, Opt. Lett. 27, 1129 (2002).
    [CrossRef]
  13. M. Cha, Opt. Lett. 23, 250 (1998).
    [CrossRef]
  14. S. Carrasco, J. P. Torres, L. Torner, and R. Schiek, Opt. Lett. 25, 1273 (2000).
    [CrossRef]
  15. S. C. Rodriguez, J. P. Torres, L. Torner, and M. M. Fejer, J. Opt. Soc. Am. B 19, 1396 (2002).
    [CrossRef]
  16. G. Imeshev, M. M. Arbore, M. M. Fejer, A. Galvanauskas, M. Fermann, and D. Harter, J. Opt. Soc. Am. B 17, 304 (2000).
    [CrossRef]

2004 (1)

2002 (5)

2001 (1)

2000 (2)

1998 (1)

1997 (1)

J. P. Torres and L. Torner, Opt. Quantum Electron. 29, 757 (1997).
[CrossRef]

1994 (1)

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

1981 (1)

A. A. Kanashov and A. M. Rubenchik, Physica D 4, 122 (1981).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1995).

Arbore, M. M.

Assanto, G.

G. I. Stegeman, R. Schiek, L. Torner, W. Torruellas, Y. Baek, D. Baboiu, Z. Wang, E. Van Stryland, D. J. Hagan, and G. Assanto, in Novel Optical Materials and Applications, I. C. Khoo, F. Simoni, and C. Umeton, eds. (Wiley, New York, 1997), Chap. 2, pp. 49–76.

Baboiu, D.

G. I. Stegeman, R. Schiek, L. Torner, W. Torruellas, Y. Baek, D. Baboiu, Z. Wang, E. Van Stryland, D. J. Hagan, and G. Assanto, in Novel Optical Materials and Applications, I. C. Khoo, F. Simoni, and C. Umeton, eds. (Wiley, New York, 1997), Chap. 2, pp. 49–76.

Baek, Y.

G. I. Stegeman, R. Schiek, L. Torner, W. Torruellas, Y. Baek, D. Baboiu, Z. Wang, E. Van Stryland, D. J. Hagan, and G. Assanto, in Novel Optical Materials and Applications, I. C. Khoo, F. Simoni, and C. Umeton, eds. (Wiley, New York, 1997), Chap. 2, pp. 49–76.

Beckwitt, K.

Buryak, A. V.

A. V. Buryak, P. Di Trapani, D. V. Skryabin, and S. Trillo, Phys. Rep. 370, 63 (2002).
[CrossRef]

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Canto-Said, E.

Carrasco, S.

Cha, M.

Chen, Y.-F.

Di Trapani, P.

A. V. Buryak, P. Di Trapani, D. V. Skryabin, and S. Trillo, Phys. Rep. 370, 63 (2002).
[CrossRef]

Fejer, M. M.

Fermann, M.

Galvanauskas, A.

Hagan, D. J.

G. I. Stegeman, R. Schiek, L. Torner, W. Torruellas, Y. Baek, D. Baboiu, Z. Wang, E. Van Stryland, D. J. Hagan, and G. Assanto, in Novel Optical Materials and Applications, I. C. Khoo, F. Simoni, and C. Umeton, eds. (Wiley, New York, 1997), Chap. 2, pp. 49–76.

Harter, D.

Ilday, F. Ö.

Imeshev, G.

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Kanashov, A. A.

A. A. Kanashov and A. M. Rubenchik, Physica D 4, 122 (1981).
[CrossRef]

Lim, H.

Liu, X.

F. Wise, L. Qian, and X. Liu, J. Nonlinear Opt. Phys. Mater. 11, 317 (2002).
[CrossRef]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Menyuk, C. R.

Qian, L.

F. Wise, L. Qian, and X. Liu, J. Nonlinear Opt. Phys. Mater. 11, 317 (2002).
[CrossRef]

K. Beckwitt, F. W. Wise, L. Qian, L. A. Walker, and E. Canto-Said, Opt. Lett. 26, 1696 (2001).
[CrossRef]

Rodriguez, S. C.

Rubenchik, A. M.

A. A. Kanashov and A. M. Rubenchik, Physica D 4, 122 (1981).
[CrossRef]

Schiek, R.

S. Carrasco, J. P. Torres, L. Torner, and R. Schiek, Opt. Lett. 25, 1273 (2000).
[CrossRef]

C. R. Menyuk, R. Schiek, and L. Torner, J. Opt. Soc. Am. B 11, 2434 (1994).
[CrossRef]

G. I. Stegeman, R. Schiek, L. Torner, W. Torruellas, Y. Baek, D. Baboiu, Z. Wang, E. Van Stryland, D. J. Hagan, and G. Assanto, in Novel Optical Materials and Applications, I. C. Khoo, F. Simoni, and C. Umeton, eds. (Wiley, New York, 1997), Chap. 2, pp. 49–76.

Schober, A. M.

Skryabin, D. V.

A. V. Buryak, P. Di Trapani, D. V. Skryabin, and S. Trillo, Phys. Rep. 370, 63 (2002).
[CrossRef]

Stegeman, G. I.

G. I. Stegeman, R. Schiek, L. Torner, W. Torruellas, Y. Baek, D. Baboiu, Z. Wang, E. Van Stryland, D. J. Hagan, and G. Assanto, in Novel Optical Materials and Applications, I. C. Khoo, F. Simoni, and C. Umeton, eds. (Wiley, New York, 1997), Chap. 2, pp. 49–76.

Torner, L.

S. C. Rodriguez, J. P. Torres, L. Torner, and M. M. Fejer, J. Opt. Soc. Am. B 19, 1396 (2002).
[CrossRef]

S. Carrasco, J. P. Torres, L. Torner, and R. Schiek, Opt. Lett. 25, 1273 (2000).
[CrossRef]

J. P. Torres and L. Torner, Opt. Quantum Electron. 29, 757 (1997).
[CrossRef]

C. R. Menyuk, R. Schiek, and L. Torner, J. Opt. Soc. Am. B 11, 2434 (1994).
[CrossRef]

G. I. Stegeman, R. Schiek, L. Torner, W. Torruellas, Y. Baek, D. Baboiu, Z. Wang, E. Van Stryland, D. J. Hagan, and G. Assanto, in Novel Optical Materials and Applications, I. C. Khoo, F. Simoni, and C. Umeton, eds. (Wiley, New York, 1997), Chap. 2, pp. 49–76.

Torres, J. P.

Torruellas, W.

G. I. Stegeman, R. Schiek, L. Torner, W. Torruellas, Y. Baek, D. Baboiu, Z. Wang, E. Van Stryland, D. J. Hagan, and G. Assanto, in Novel Optical Materials and Applications, I. C. Khoo, F. Simoni, and C. Umeton, eds. (Wiley, New York, 1997), Chap. 2, pp. 49–76.

Trillo, S.

A. V. Buryak, P. Di Trapani, D. V. Skryabin, and S. Trillo, Phys. Rep. 370, 63 (2002).
[CrossRef]

Van Stryland, E.

G. I. Stegeman, R. Schiek, L. Torner, W. Torruellas, Y. Baek, D. Baboiu, Z. Wang, E. Van Stryland, D. J. Hagan, and G. Assanto, in Novel Optical Materials and Applications, I. C. Khoo, F. Simoni, and C. Umeton, eds. (Wiley, New York, 1997), Chap. 2, pp. 49–76.

Walker, L. A.

Wang, Z.

G. I. Stegeman, R. Schiek, L. Torner, W. Torruellas, Y. Baek, D. Baboiu, Z. Wang, E. Van Stryland, D. J. Hagan, and G. Assanto, in Novel Optical Materials and Applications, I. C. Khoo, F. Simoni, and C. Umeton, eds. (Wiley, New York, 1997), Chap. 2, pp. 49–76.

Wise, F.

F. Wise, L. Qian, and X. Liu, J. Nonlinear Opt. Phys. Mater. 11, 317 (2002).
[CrossRef]

Wise, F. W.

IEEE J. Quantum Electron. (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

J. Nonlinear Opt. Phys. Mater. (1)

F. Wise, L. Qian, and X. Liu, J. Nonlinear Opt. Phys. Mater. 11, 317 (2002).
[CrossRef]

J. Opt. Soc. Am. B (5)

Opt. Lett. (4)

Opt. Quantum Electron. (1)

J. P. Torres and L. Torner, Opt. Quantum Electron. 29, 757 (1997).
[CrossRef]

Phys. Rep. (1)

A. V. Buryak, P. Di Trapani, D. V. Skryabin, and S. Trillo, Phys. Rep. 370, 63 (2002).
[CrossRef]

Physica D (1)

A. A. Kanashov and A. M. Rubenchik, Physica D 4, 122 (1981).
[CrossRef]

Other (2)

G. I. Stegeman, R. Schiek, L. Torner, W. Torruellas, Y. Baek, D. Baboiu, Z. Wang, E. Van Stryland, D. J. Hagan, and G. Assanto, in Novel Optical Materials and Applications, I. C. Khoo, F. Simoni, and C. Umeton, eds. (Wiley, New York, 1997), Chap. 2, pp. 49–76.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Average spectral shift (in units of the initial FWHM, 4.4 THz) with propagation. The dashed curve shows the linear shift followed by saturation with constant Λ. The solid (dashed–dotted) curve shows the shift with chirped structure to optimize (hinder) the spectral shift. Inset, input spectrum (rescaled, dashed–dotted curve) and shifted spectra with (black) and without (gray) period chirp.

Fig. 2
Fig. 2

Spectra and (inset) temporal profile of the input pulse (dashed–dotted) and shifted pulse before (gray curve) and after (black curve) filtering. Filtering reduces the output pulse energy from 48% to 33% of that launched but yields a pulse with Q=0.96. The C-PPLN sample length is 4.6 cm.

Fig. 3
Fig. 3

Frequency shift of 5-ps, 50-pJ pulses in waveguided C-PPLN. The dashed–dotted curves show the input spectrum. The solid (dashed) curve shows the downshift (upshift) with a grating chirp of 18.425 to 18.405 µm (18.36 to 18.38 µm), after filtering out the unshifted frequency components. The waveguide dimensions are 3 µm by 7 µm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ia1ξ-δ122a1τ2+a1*a2 expiβξ=0,
ia2ξ-δ222a2τ2-ia2τ+a12 exp-iβξ=0.
ia1ξ-δ122a1τ2-1β(a12a1NLSE+2i1βa12a1τ)correction=0,

Metrics