Abstract

We propose a novel broadband polarizing beam splitter with a compact sandwich structure that has a subwavelength grating in the quasi-static domain as the filling. The design is based on effective-medium theory an anisotropic thin-film theory, and the performance is investigated with rigorous coupled-wave theory. The design results show that the structure can provide a high polarization extinction ratio in a broad spectral range.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Ojima, A. Saito, T. Kaku, M. Ito, Y. Tsunoda, S. Takayama, and Y. Sugita, Appl. Opt. 25, 483 (1986).
    [CrossRef]
  2. Q. W. Song, M. C. Lee, and P. J. Talbot, Appl. Opt. 31, 6240 (1992).
    [CrossRef] [PubMed]
  3. R. C. Tyan, P. C. Sun, A. Scherer, and Y. Fainman, Opt. Lett. 21, 761 (1996).
    [CrossRef] [PubMed]
  4. D. Dias, S. Stankovic, H. Haidner, L. L. Wang, T. Tschudi, M. Ferstl, and R. Steingrüber, J. Opt. A 3, 164 (2001).
    [CrossRef]
  5. M. Schmitz, R. Brauer, and O. Bryngdahl, Opt. Lett. 20, 1830 (1995).
    [CrossRef]
  6. S. M. Rytov, Sov. Phys. JETP 2, 466 (1956).
  7. L. F. Li, J. Chandezon, G. Granet, and J.-P. Plumey, Appl. Opt. 38, 304 (1999).
    [CrossRef]

2001

D. Dias, S. Stankovic, H. Haidner, L. L. Wang, T. Tschudi, M. Ferstl, and R. Steingrüber, J. Opt. A 3, 164 (2001).
[CrossRef]

1999

1996

1995

1992

1986

1956

S. M. Rytov, Sov. Phys. JETP 2, 466 (1956).

Brauer, R.

Bryngdahl, O.

Chandezon, J.

Dias, D.

D. Dias, S. Stankovic, H. Haidner, L. L. Wang, T. Tschudi, M. Ferstl, and R. Steingrüber, J. Opt. A 3, 164 (2001).
[CrossRef]

Fainman, Y.

Ferstl, M.

D. Dias, S. Stankovic, H. Haidner, L. L. Wang, T. Tschudi, M. Ferstl, and R. Steingrüber, J. Opt. A 3, 164 (2001).
[CrossRef]

Granet, G.

Haidner, H.

D. Dias, S. Stankovic, H. Haidner, L. L. Wang, T. Tschudi, M. Ferstl, and R. Steingrüber, J. Opt. A 3, 164 (2001).
[CrossRef]

Ito, M.

Kaku, T.

Lee, M. C.

Li, L. F.

Ojima, M.

Plumey, J.-P.

Rytov, S. M.

S. M. Rytov, Sov. Phys. JETP 2, 466 (1956).

Saito, A.

Scherer, A.

Schmitz, M.

Song, Q. W.

Stankovic, S.

D. Dias, S. Stankovic, H. Haidner, L. L. Wang, T. Tschudi, M. Ferstl, and R. Steingrüber, J. Opt. A 3, 164 (2001).
[CrossRef]

Steingrüber, R.

D. Dias, S. Stankovic, H. Haidner, L. L. Wang, T. Tschudi, M. Ferstl, and R. Steingrüber, J. Opt. A 3, 164 (2001).
[CrossRef]

Sugita, Y.

Sun, P. C.

Takayama, S.

Talbot, P. J.

Tschudi, T.

D. Dias, S. Stankovic, H. Haidner, L. L. Wang, T. Tschudi, M. Ferstl, and R. Steingrüber, J. Opt. A 3, 164 (2001).
[CrossRef]

Tsunoda, Y.

Tyan, R. C.

Wang, L. L.

D. Dias, S. Stankovic, H. Haidner, L. L. Wang, T. Tschudi, M. Ferstl, and R. Steingrüber, J. Opt. A 3, 164 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the broadband PBS.

Fig. 2
Fig. 2

Equivalent anisotropic homogeneous layer of the rectangular-groove SWG.

Fig. 3
Fig. 3

Ranges of n1 for the case of np=n0 tanθ: (a) For the case of n1<n0n2/n0+n2, n1 should be less than the values marked on the solid curves; (b) for the case of n1>n0n2/n0-n2, with n0n2, n1 should be greater than the values marked on the solid curves.

Fig. 4
Fig. 4

ER versus wavelength.

Fig. 5
Fig. 5

ER versus incident angle λ=1.55 µm.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

np=n121-α+n22α1/2,ns=1-α/n12+α/n221/2.
Rp=n02 cos θ1np cos2 θ-npcos θ12/4n02cos2 θ cot2×2πλnph cos θ1+n02 cos θ1np cos2 θ+npcos θ12,
ER=minRs/Rp,Tp/Ts=Rs/Rp=1/Rp.
ERmin=n02np2-n04 sin2 θ+np4 cos2 θ/n02np2-n04 sin2 θ-np4 cos2 θ2.
np=n0 or np=n0 tan θ,
np=n0np=n121-α+n22α1/2α=n02-n12n22-n12.
np=n0 tanθθ>θcsθ=arctann121-α+n22α1/2/n0θ>arcsin1-α/n12+α/n22-1/2/n0.
n02n12-n222α2-n12-n22n02n12-n22+n12n22α+n14n22<0,
n1<n0n2n0+n2 or n1>n0n2n0-n2    n0n2.
ααmin,αmaxα0,1,
αmin=n02n12+n12n22-n02n22-n04n14-2n02n14n22-2n04n12n22+n14n24-2n02n12n24+n04n241/22n02n1+n2n1-n2,αmax=n02n12+n12n22-n02n22+n04n14-2n02n14n22-2n04n12n22+n14n24-2n02n12n24+n04n241/22n02n1+n2n1-n2.

Metrics