Abstract

An ultracompact optical imaging system allowing various magnifications or demagnifications and based on microlenslet arrays is presented for the first time to our knowledge. This research generalizes recent findings regarding microlenslet-array-based 1:1 relay systems [Appl. Opt. 42, 6838 (2003)]. Through optical ray tracing, the feasibility of magnifying gray-scale images through a stack of two dissimilar microlenslet arrays is demonstrated for the first time to our knowledge. Results presented specifically demonstrate that a compact imaging system operating at a magnification of 2 is feasible with an overall length of 9 mm. Optical aberrations of the most basic configuration are evaluated, and optimization is discussed.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Anderson, Appl. Opt. 18, 477 (1979).
    [Crossref] [PubMed]
  2. V. Shaoulov and J. Rolland, Appl. Opt. 42, 6838 (2003).
    [Crossref] [PubMed]
  3. V. Shaoulov and J. Rolland, Proc. SPIE 4832, 74 (2002).
    [Crossref]
  4. L. Erdmann and K. J. Gabriel, Appl. Opt. 40, 5592 (2001).
    [Crossref]
  5. J.-S. Jang, F. Jin, and B. Javidi, Opt. Lett. 28, 1421 (2003).
    [Crossref] [PubMed]
  6. J.-S. Jang and B. Javidi, Opt. Lett. 27, 1767 (2002).
    [Crossref]
  7. R. Martins and J. Rolland, Proc. SPIE 5079, 277 (2003).
    [Crossref]
  8. V. Shaoulov, R. Martins, and J. Rolland, “Compact microlenslet array imager,” U.S. patent pending, 2003.
  9. W. Cassarly, Proc. SPIE 5186, 1 (2003).
    [Crossref]

2003 (4)

2002 (2)

J.-S. Jang and B. Javidi, Opt. Lett. 27, 1767 (2002).
[Crossref]

V. Shaoulov and J. Rolland, Proc. SPIE 4832, 74 (2002).
[Crossref]

2001 (1)

1979 (1)

Anderson, R. H.

Cassarly, W.

W. Cassarly, Proc. SPIE 5186, 1 (2003).
[Crossref]

Erdmann, L.

Gabriel, K. J.

Jang, J.-S.

Javidi, B.

Jin, F.

Martins, R.

R. Martins and J. Rolland, Proc. SPIE 5079, 277 (2003).
[Crossref]

V. Shaoulov, R. Martins, and J. Rolland, “Compact microlenslet array imager,” U.S. patent pending, 2003.

Rolland, J.

V. Shaoulov and J. Rolland, Appl. Opt. 42, 6838 (2003).
[Crossref] [PubMed]

R. Martins and J. Rolland, Proc. SPIE 5079, 277 (2003).
[Crossref]

V. Shaoulov and J. Rolland, Proc. SPIE 4832, 74 (2002).
[Crossref]

V. Shaoulov, R. Martins, and J. Rolland, “Compact microlenslet array imager,” U.S. patent pending, 2003.

Shaoulov, V.

V. Shaoulov and J. Rolland, Appl. Opt. 42, 6838 (2003).
[Crossref] [PubMed]

V. Shaoulov and J. Rolland, Proc. SPIE 4832, 74 (2002).
[Crossref]

V. Shaoulov, R. Martins, and J. Rolland, “Compact microlenslet array imager,” U.S. patent pending, 2003.

Appl. Opt. (3)

Opt. Lett. (2)

Proc. SPIE (3)

R. Martins and J. Rolland, Proc. SPIE 5079, 277 (2003).
[Crossref]

V. Shaoulov and J. Rolland, Proc. SPIE 4832, 74 (2002).
[Crossref]

W. Cassarly, Proc. SPIE 5186, 1 (2003).
[Crossref]

Other (1)

V. Shaoulov, R. Martins, and J. Rolland, “Compact microlenslet array imager,” U.S. patent pending, 2003.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Optical layout of 1:M imaging with a stack of two arrays of microlenses.

Fig. 2
Fig. 2

ASAP layout of 1:2 microlenslet-array-based magnification system with two 11×11 arrays of microlenses and the appropriate baffle. From right to left, the baffle, the two dissimilar microlenslet arrays made of square plano–convex lenses, and the detector upon which an image will be formed given an object in front of the baffle are shown.

Fig. 3
Fig. 3

Accuracy of the ray trace in percents as a function of the number of rays emitted from the object.

Fig. 4
Fig. 4

Imaging of a gray-scale object through a 1:2 microlenslet-array-based magnifying system: (a) object and (b) magnified image.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

OAL=m1+12m1f1+m2+12m2f2,
M=m1m2.
OALm1=0,
m1f2m2-1m2+1=m2f1m1-1m2+1.
m1=Mf1+M2f2Mf1+f21/2.

Metrics