Abstract

The efficiency of evanescent coupling between a silica optical fiber taper and a silicon photonic crystal waveguide is studied. A high-reflectivity mirror on the end of the photonic crystal waveguide is used to recollect, in the backward-propagating fiber mode, the optical power that is initially coupled into the photonic crystal waveguide. An outcoupled power in the backward-propagating fiber mode of 88% of the input power is measured, corresponding to a lower bound on the coupler efficiency of 94%.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Knight, G. Cheung, F. Jacques, and T. Birks, Opt. Lett. 22, 1129 (1997).
    [CrossRef] [PubMed]
  2. P. E. Barclay, K. Srinivasan, M. Borselli, and O. Painter, IEE Electron. Lett. 39, 842 (2003).
    [CrossRef]
  3. W. Kuang, C. Kim, A. Stapleton, and J. O’Brien, Opt. Lett. 27, 1604 (2002).
    [CrossRef]
  4. M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, IEEE J. Quantum Electron. 38, 736 (2002).
    [CrossRef]
  5. P. E. Barclay, K. Srinivasan, M. Borselli, and O. Painter, arXiv.org e-Print archive, , August12, 2003, http://arXiv.org/quant-ph/0308070 .
  6. P. E. Barclay, K. Srinivasan, and O. Painter, J. Opt. Soc. Am. B 20, 2274 (2003).
    [CrossRef]
  7. K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, arXiv.org e-Print archive, , September25, 2003, http://arXiv.org/quant-ph/0309190 .
  8. H. A. Haus, Waves and Fields in Optoelectronics, Prentice-Hall Series in Solid State Physical Electronics (Prentice-Hall, Englewood Cliffs, N.J., 1984), Chap. 3, pp. 59–71.
  9. P. Yeh and H. F. Taylor, Appl. Opt. 19, 2848 (1980).
    [CrossRef] [PubMed]
  10. We take r1t′r2t′/r1t′r2t′=1, corresponding to a resonant condition within the PCWG.

2003 (2)

P. E. Barclay, K. Srinivasan, M. Borselli, and O. Painter, IEE Electron. Lett. 39, 842 (2003).
[CrossRef]

P. E. Barclay, K. Srinivasan, and O. Painter, J. Opt. Soc. Am. B 20, 2274 (2003).
[CrossRef]

2002 (2)

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, IEEE J. Quantum Electron. 38, 736 (2002).
[CrossRef]

W. Kuang, C. Kim, A. Stapleton, and J. O’Brien, Opt. Lett. 27, 1604 (2002).
[CrossRef]

1997 (1)

1980 (1)

Barclay, P. E.

P. E. Barclay, K. Srinivasan, M. Borselli, and O. Painter, IEE Electron. Lett. 39, 842 (2003).
[CrossRef]

P. E. Barclay, K. Srinivasan, and O. Painter, J. Opt. Soc. Am. B 20, 2274 (2003).
[CrossRef]

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, arXiv.org e-Print archive, , September25, 2003, http://arXiv.org/quant-ph/0309190 .

P. E. Barclay, K. Srinivasan, M. Borselli, and O. Painter, arXiv.org e-Print archive, , August12, 2003, http://arXiv.org/quant-ph/0308070 .

Birks, T.

Borselli, M.

P. E. Barclay, K. Srinivasan, M. Borselli, and O. Painter, IEE Electron. Lett. 39, 842 (2003).
[CrossRef]

P. E. Barclay, K. Srinivasan, M. Borselli, and O. Painter, arXiv.org e-Print archive, , August12, 2003, http://arXiv.org/quant-ph/0308070 .

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, arXiv.org e-Print archive, , September25, 2003, http://arXiv.org/quant-ph/0309190 .

Cheung, G.

Haus, H. A.

H. A. Haus, Waves and Fields in Optoelectronics, Prentice-Hall Series in Solid State Physical Electronics (Prentice-Hall, Englewood Cliffs, N.J., 1984), Chap. 3, pp. 59–71.

Jacques, F.

Kim, C.

Knight, J.

Kuang, W.

Notomi, M.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, IEEE J. Quantum Electron. 38, 736 (2002).
[CrossRef]

O’Brien, J.

Painter, O.

P. E. Barclay, K. Srinivasan, and O. Painter, J. Opt. Soc. Am. B 20, 2274 (2003).
[CrossRef]

P. E. Barclay, K. Srinivasan, M. Borselli, and O. Painter, IEE Electron. Lett. 39, 842 (2003).
[CrossRef]

P. E. Barclay, K. Srinivasan, M. Borselli, and O. Painter, arXiv.org e-Print archive, , August12, 2003, http://arXiv.org/quant-ph/0308070 .

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, arXiv.org e-Print archive, , September25, 2003, http://arXiv.org/quant-ph/0309190 .

Shinya, A.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, IEEE J. Quantum Electron. 38, 736 (2002).
[CrossRef]

Srinivasan, K.

P. E. Barclay, K. Srinivasan, and O. Painter, J. Opt. Soc. Am. B 20, 2274 (2003).
[CrossRef]

P. E. Barclay, K. Srinivasan, M. Borselli, and O. Painter, IEE Electron. Lett. 39, 842 (2003).
[CrossRef]

P. E. Barclay, K. Srinivasan, M. Borselli, and O. Painter, arXiv.org e-Print archive, , August12, 2003, http://arXiv.org/quant-ph/0308070 .

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, arXiv.org e-Print archive, , September25, 2003, http://arXiv.org/quant-ph/0309190 .

Stapleton, A.

Takahashi, C.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, IEEE J. Quantum Electron. 38, 736 (2002).
[CrossRef]

Takahashi, J.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, IEEE J. Quantum Electron. 38, 736 (2002).
[CrossRef]

Taylor, H. F.

Yamada, K.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, IEEE J. Quantum Electron. 38, 736 (2002).
[CrossRef]

Yeh, P.

Yokohama, I.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, IEEE J. Quantum Electron. 38, 736 (2002).
[CrossRef]

Appl. Opt. (1)

IEE Electron. Lett. (1)

P. E. Barclay, K. Srinivasan, M. Borselli, and O. Painter, IEE Electron. Lett. 39, 842 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, IEEE J. Quantum Electron. 38, 736 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (2)

Other (4)

P. E. Barclay, K. Srinivasan, M. Borselli, and O. Painter, arXiv.org e-Print archive, , August12, 2003, http://arXiv.org/quant-ph/0308070 .

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, arXiv.org e-Print archive, , September25, 2003, http://arXiv.org/quant-ph/0309190 .

H. A. Haus, Waves and Fields in Optoelectronics, Prentice-Hall Series in Solid State Physical Electronics (Prentice-Hall, Englewood Cliffs, N.J., 1984), Chap. 3, pp. 59–71.

We take r1t′r2t′/r1t′r2t′=1, corresponding to a resonant condition within the PCWG.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic of the coupling scheme. (b) Illustration of the contradirectional coupling process and the feedback within the PCWG caused by the reflectivities r1,2 of the waveguide terminations.

Fig. 2
Fig. 2

(a) Waveguide geometry and finite-difference time-domain calculated magnetic field profile (By) of the TE-1 mode. (b) Scanning electron microscopy image of the high (r1) reflectivity waveguide termination. The PCWG has a transverse lattice constant Λx=415 nm, a longitudinal lattice constant Λz=536 nm, and length L=200Λz. (c) Dispersion of the TE-1 PCWG mode. Also shown are the mirror termination band edges for momentum along the waveguide axis (zˆ). The corresponding partial bandgap of the mirror region is indicated by the shaded region.

Fig. 3
Fig. 3

(a) Reflection and (b) transmission of the fiber taper as a function of wavelength for a taper height of 0.20 µm. Both signals were normalized to the taper transmission with the PCWG absent. (c) Measured taper transmission minimum (λ1600 nm), reflection maximum (λ1600 nm), and off-resonant transmission (λ1565 nm) as a function of taper height. Also shown are fits to the data, and the resulting predicted coupler efficiency, κ2. Asymmetry in the fiber taper loss about the coupling region was taken into account by repeating the measurements with the direction of propagation through the taper and the orientation of the PCWG sample reversed; the geometric mean of the values obtained from the two orientations takes any asymmetry into account.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

aF+LaPC-0=tκκtaF+0aPC-L,
T=aF+L2=t+κκtr1r21-r1tr2t2,
R=aF-02=κκr11-r1tr2t2,

Metrics