Abstract

The influence of in-line filters on the phase jitter of chirped optical pulses propagating in arbitrary dispersion-managed systems is studied with a semianalytic moment method. Because of its stabilizing effect on the amplitude, filtering reduces the nonlinear phase jitter that accumulates through self-phase modulation. As in the case of constant-dispersion soliton links, we observe that the phase variance grows only linearly with distance in the presence of filtering. Phase jitter reduction is observed and accurately predicted by the moment method in two dispersion-managed systems with different levels of nonlinearity and filter strength.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Hoshida, O. Vassilieva, K. Yamada, S. Choudhary, R. Pecqueur, and H. Kuwahara, J. Lightwave Technol. 20, 1989 (2002).
    [CrossRef]
  2. J. Leibrich, C. Wree, and W. Rosenkranz, IEEE Photon. Technol. Lett. 14, 155 (2002).
    [CrossRef]
  3. H. Kim and R.-J. Essiambre, IEEE Photon. Technol. Lett. 15, 769 (2003).
    [CrossRef]
  4. M. Hanna, H. Porte, W. T. Rhodes, and J.-P. Goedgebuer, Opt. Lett. 24, 732 (1999).
    [CrossRef]
  5. C. J. McKinstrie, C. Xie, and C. Xu, Opt. Lett. 28, 604 (2003).
    [CrossRef] [PubMed]
  6. V. S. Grigoryan, C. R. Menyuk, and R. M. Mu, J. Lightwave Technol. 17, 1347 (1999).
    [CrossRef]
  7. M. Hanna, D. Boivin, P.-A. Lacourt, and J.-P. Goedgebuer, J. Opt. Soc. Am. B 21, 24 (2004).
    [CrossRef]
  8. O. Leclerc and E. Desurvire, Opt. Lett. 23, 1453 (1998).
    [CrossRef]
  9. A. Mecozzi, J. D. Moores, H. A. Haus, and Y. Lai, Opt. Lett. 16, 1841 (1991).
    [CrossRef] [PubMed]
  10. E. A. Golovchenko, J. M. Jacob, A. N. Pilipetskii, C. R. Menyuk, and G. M. Carter, Opt. Lett. 22, 289 (1997).
    [CrossRef] [PubMed]
  11. C. J. McKinstrie, J. Opt. Soc. Am. B 19, 1275 (2002).
    [CrossRef]

2004 (1)

2003 (2)

C. J. McKinstrie, C. Xie, and C. Xu, Opt. Lett. 28, 604 (2003).
[CrossRef] [PubMed]

H. Kim and R.-J. Essiambre, IEEE Photon. Technol. Lett. 15, 769 (2003).
[CrossRef]

2002 (3)

1999 (2)

1998 (1)

1997 (1)

1991 (1)

Boivin, D.

Carter, G. M.

Choudhary, S.

Desurvire, E.

Essiambre, R.-J.

H. Kim and R.-J. Essiambre, IEEE Photon. Technol. Lett. 15, 769 (2003).
[CrossRef]

Goedgebuer, J.-P.

Golovchenko, E. A.

Grigoryan, V. S.

Hanna, M.

Haus, H. A.

Hoshida, T.

Jacob, J. M.

Kim, H.

H. Kim and R.-J. Essiambre, IEEE Photon. Technol. Lett. 15, 769 (2003).
[CrossRef]

Kuwahara, H.

Lacourt, P.-A.

Lai, Y.

Leclerc, O.

Leibrich, J.

J. Leibrich, C. Wree, and W. Rosenkranz, IEEE Photon. Technol. Lett. 14, 155 (2002).
[CrossRef]

McKinstrie, C. J.

Mecozzi, A.

Menyuk, C. R.

Moores, J. D.

Mu, R. M.

Pecqueur, R.

Pilipetskii, A. N.

Porte, H.

Rhodes, W. T.

Rosenkranz, W.

J. Leibrich, C. Wree, and W. Rosenkranz, IEEE Photon. Technol. Lett. 14, 155 (2002).
[CrossRef]

Vassilieva, O.

Wree, C.

J. Leibrich, C. Wree, and W. Rosenkranz, IEEE Photon. Technol. Lett. 14, 155 (2002).
[CrossRef]

Xie, C.

Xu, C.

Yamada, K.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Standard deviation of the phase as a function of distance for the DM soliton system with optical filter bandwidths of 500, 100, and 45 GHz. Solid curves, Monte Carlo simulation results; dashed curves, moment method results.

Fig. 2
Fig. 2

Standard deviation of the phase as a function of distance for the DM quasi-linear system with optical filter bandwidths of 500, 100, and 45 GHz. Solid curves, Monte Carlo simulation results; dashed curves, moment method results.

Fig. 3
Fig. 3

Contribution of the nonlinear phase noise to the overall phase jitter for the DM soliton system. Solid curve, nonlinear phase variance with 500-GHz filters; dashed curve, nonlinear phase variance with 45-GHz filters; circles, linear phase variance for 500-GHZ filters; crosses, linear phase variance for 45-GHz filters.

Tables (1)

Tables Icon

Table 1 Numerical Values of the System Parameters

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

iuz-12β2z-ibz2ut2+γzu2u=igzu+Fˆz,t,
Fˆz,tFˆ*z,t=2g0ω0nspzδz-zδt-t,
dΦdz=-β2ϕ2Φ+γP+iE-+argu-ΦuFˆ*-u*Fˆdt-12E-+u*Fˆ+uFˆ*dt,
dPdz=2g+β2ϕ2-bz2E-+ut2dtP+iE-+2u2-PuFˆ*-u*Fˆdt,
P=P0+i0z1EA1-+2u2-P×uFˆ*-u*Fˆdtdz1A1,
A1z=exp0z2g+β2ϕ2-bz2E-+ut2dtdz1.

Metrics