Abstract

We demonstrate a fiber chirped pulse amplification system that uses an engineered nonlinearly chirped fiber Bragg grating stretcher dispersion matched to the Treacy compressor. The seed pulses at 1558 nm are stretched to 720 ps, amplified by more than 50 dB to 6.5-µJ energy, and recompressed to 940 fs. After almost 1000 times compression the pulses are within 30% of the bandwidth limit and have a contrast ratio of better than 30 dB.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Strickland and G. Mourou, Opt. Commun. 56, 219 (1985).
    [CrossRef]
  2. S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, Rev. Sci. Instrum. 69, 1207 (1998).
    [CrossRef]
  3. M. D. Perry, D. Pennington, B. C. Stuart, G. Tietbohl, J. A. Britten, C. Brown, S. Herman, B. Golick, M. Kartz, J. Miller, H. T. Powell, M. Vergino, and V. Yanovsky, Opt. Lett. 24, 160 (1999).
    [CrossRef]
  4. A. Galvanauskas, M. E. Fermann, D. Harter, K. Sugden, and I. Bennion, Appl. Phys. Lett. 66, 1053 (1995).
    [CrossRef]
  5. P. E. Britton, N. G. R. Broderick, D. J. Richardson, P. G. R. Smith, G. W. Ross, and D. C. Hanna, Opt. Lett. 23, 1588 (1998).
    [CrossRef]
  6. A. Galvanauskas, in Ultrafast Lasers: Technology and Applications, M. E. Fermann, A. Galvanauskas, and G. Sucha, eds. (Marcel Dekker, New York, 2002), p. 155.
  7. E. B. Treacy, IEEE J. Quantum Electron. QE-5, 454 (1969).
    [CrossRef]
  8. G. Olivié, D. Villate, L. Videau, and F. Salin, in Conference on Lasers and Electro-Optics, Vol. 89 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper CThPDA10.
  9. F. X. Kärtner, U. Morgner, R. Ell, T. Schibli, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, J. Opt. Soc. Am. B 18, 882 (2001).
    [CrossRef]
  10. M. Zavelani-Rossi, G. Cerullo, S. D. Silvestri, L. Gallmann, N. Matuschek, G. Steinmeyer, U. Keller, G. Angelow, V. Scheuer, and T. Tschudi, Opt. Lett. 26, 1155 (2001).
    [CrossRef]
  11. G. Imeshev, M. A. Arbore, M. M. Fejer, A. Galvanauskas, M. Fermann, and D. Harter, J. Opt. Soc. Am. B 17, 304 (2000).
    [CrossRef]
  12. L. Gallmann, G. Steinmeyer, U. Keller, G. Imeshev, M. M. Fejer, and J.-P. Meyn, Opt. Lett. 26, 614 (2001).
    [CrossRef]
  13. http://www.imra.com
  14. M. Hofer, M. E. Fermann, A. Galvanauskas, D. Harter, and R. S. Windeler, IEEE Photon. Technol. Lett. 11, 650 (1999).
    [CrossRef]

2001 (3)

2000 (1)

1999 (2)

1998 (2)

1995 (1)

A. Galvanauskas, M. E. Fermann, D. Harter, K. Sugden, and I. Bennion, Appl. Phys. Lett. 66, 1053 (1995).
[CrossRef]

1985 (1)

D. Strickland and G. Mourou, Opt. Commun. 56, 219 (1985).
[CrossRef]

1969 (1)

E. B. Treacy, IEEE J. Quantum Electron. QE-5, 454 (1969).
[CrossRef]

Angelow, G.

Arbore, M. A.

Backus, S.

S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, Rev. Sci. Instrum. 69, 1207 (1998).
[CrossRef]

Bennion, I.

A. Galvanauskas, M. E. Fermann, D. Harter, K. Sugden, and I. Bennion, Appl. Phys. Lett. 66, 1053 (1995).
[CrossRef]

Britten, J. A.

Britton, P. E.

Broderick, N. G. R.

Brown, C.

Cerullo, G.

Durfee, C. G.

S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, Rev. Sci. Instrum. 69, 1207 (1998).
[CrossRef]

Ell, R.

Fejer, M. M.

Fermann, M.

Fermann, M. E.

M. Hofer, M. E. Fermann, A. Galvanauskas, D. Harter, and R. S. Windeler, IEEE Photon. Technol. Lett. 11, 650 (1999).
[CrossRef]

A. Galvanauskas, M. E. Fermann, D. Harter, K. Sugden, and I. Bennion, Appl. Phys. Lett. 66, 1053 (1995).
[CrossRef]

Fujimoto, J. G.

Gallmann, L.

Galvanauskas, A.

G. Imeshev, M. A. Arbore, M. M. Fejer, A. Galvanauskas, M. Fermann, and D. Harter, J. Opt. Soc. Am. B 17, 304 (2000).
[CrossRef]

M. Hofer, M. E. Fermann, A. Galvanauskas, D. Harter, and R. S. Windeler, IEEE Photon. Technol. Lett. 11, 650 (1999).
[CrossRef]

A. Galvanauskas, M. E. Fermann, D. Harter, K. Sugden, and I. Bennion, Appl. Phys. Lett. 66, 1053 (1995).
[CrossRef]

A. Galvanauskas, in Ultrafast Lasers: Technology and Applications, M. E. Fermann, A. Galvanauskas, and G. Sucha, eds. (Marcel Dekker, New York, 2002), p. 155.

Golick, B.

Hanna, D. C.

Harter, D.

G. Imeshev, M. A. Arbore, M. M. Fejer, A. Galvanauskas, M. Fermann, and D. Harter, J. Opt. Soc. Am. B 17, 304 (2000).
[CrossRef]

M. Hofer, M. E. Fermann, A. Galvanauskas, D. Harter, and R. S. Windeler, IEEE Photon. Technol. Lett. 11, 650 (1999).
[CrossRef]

A. Galvanauskas, M. E. Fermann, D. Harter, K. Sugden, and I. Bennion, Appl. Phys. Lett. 66, 1053 (1995).
[CrossRef]

Herman, S.

Hofer, M.

M. Hofer, M. E. Fermann, A. Galvanauskas, D. Harter, and R. S. Windeler, IEEE Photon. Technol. Lett. 11, 650 (1999).
[CrossRef]

Imeshev, G.

Ippen, E. P.

Kapteyn, H. C.

S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, Rev. Sci. Instrum. 69, 1207 (1998).
[CrossRef]

Kärtner, F. X.

Kartz, M.

Keller, U.

Matuschek, N.

Meyn, J.-P.

Miller, J.

Morgner, U.

Mourou, G.

D. Strickland and G. Mourou, Opt. Commun. 56, 219 (1985).
[CrossRef]

Murnane, M. M.

S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, Rev. Sci. Instrum. 69, 1207 (1998).
[CrossRef]

Olivié, G.

G. Olivié, D. Villate, L. Videau, and F. Salin, in Conference on Lasers and Electro-Optics, Vol. 89 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper CThPDA10.

Pennington, D.

Perry, M. D.

Powell, H. T.

Richardson, D. J.

Ross, G. W.

Salin, F.

G. Olivié, D. Villate, L. Videau, and F. Salin, in Conference on Lasers and Electro-Optics, Vol. 89 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper CThPDA10.

Scheuer, V.

Schibli, T.

Silvestri, S. D.

Smith, P. G. R.

Steinmeyer, G.

Strickland, D.

D. Strickland and G. Mourou, Opt. Commun. 56, 219 (1985).
[CrossRef]

Stuart, B. C.

Sugden, K.

A. Galvanauskas, M. E. Fermann, D. Harter, K. Sugden, and I. Bennion, Appl. Phys. Lett. 66, 1053 (1995).
[CrossRef]

Tietbohl, G.

Treacy, E. B.

E. B. Treacy, IEEE J. Quantum Electron. QE-5, 454 (1969).
[CrossRef]

Tschudi, T.

Vergino, M.

Videau, L.

G. Olivié, D. Villate, L. Videau, and F. Salin, in Conference on Lasers and Electro-Optics, Vol. 89 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper CThPDA10.

Villate, D.

G. Olivié, D. Villate, L. Videau, and F. Salin, in Conference on Lasers and Electro-Optics, Vol. 89 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper CThPDA10.

Windeler, R. S.

M. Hofer, M. E. Fermann, A. Galvanauskas, D. Harter, and R. S. Windeler, IEEE Photon. Technol. Lett. 11, 650 (1999).
[CrossRef]

Yanovsky, V.

Zavelani-Rossi, M.

Appl. Phys. Lett. (1)

A. Galvanauskas, M. E. Fermann, D. Harter, K. Sugden, and I. Bennion, Appl. Phys. Lett. 66, 1053 (1995).
[CrossRef]

IEEE J. Quantum Electron. (1)

E. B. Treacy, IEEE J. Quantum Electron. QE-5, 454 (1969).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Hofer, M. E. Fermann, A. Galvanauskas, D. Harter, and R. S. Windeler, IEEE Photon. Technol. Lett. 11, 650 (1999).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

D. Strickland and G. Mourou, Opt. Commun. 56, 219 (1985).
[CrossRef]

Opt. Lett. (4)

Rev. Sci. Instrum. (1)

S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, Rev. Sci. Instrum. 69, 1207 (1998).
[CrossRef]

Other (3)

A. Galvanauskas, in Ultrafast Lasers: Technology and Applications, M. E. Fermann, A. Galvanauskas, and G. Sucha, eds. (Marcel Dekker, New York, 2002), p. 155.

G. Olivié, D. Villate, L. Videau, and F. Salin, in Conference on Lasers and Electro-Optics, Vol. 89 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper CThPDA10.

http://www.imra.com

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the CPA setup. The seed pulses are stretched by the nonlinearly chirped FBG and amplified with two single-mode Er-doped fiber amplifiers (EDFA) and one large-mode-area (LMA) Er/Yb-doped fiber amplifier. An AOM is used to lower the repetition rate. Note that for clarity a two-grating compressor arrangement is shown, whereas in the experiment we used a folded configuration with one grating.

Fig. 2
Fig. 2

(a) Measured spectra for seed pulses (7.66 nm FWHM), for stretched pulses (6.75 nm FWHM), and for 1.3-nJ pulses after one preamplifier (6.7 nm FWHM). (b) Measured spectra after the power amplifier, 1.6-µJ pulses (5.7 nm FWHM) and 6.5-µJ pulses (5.5 nm FWHM).

Fig. 3
Fig. 3

(a) Autocorrelation traces on a linear scale; calculated autocorrelation for a bandwidth-limited pulse (1.03 ps FWHM); measured autocorrelation trace for 1.3-nJ pulses (1.07 ps FWHM), 1.6-µJ pulses (1.16 ps FWHM), and 6.5-µJ pulses (1.34 ps FWHM); measured autocorrelation trace when a linearly chirped FBG is used as a stretcher (4.4 ps FWHM). (b) Autocorrelation traces on a logarithmic scale. At all pulse energies the contrast ratio is >30 dB.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

τFBG=-τGCλ=-ϕGC/ω.
λ=2neffΛ,
τFBG=2ngrz/c,

Metrics