Abstract

Petawatt solid-state lasers require meter-sized gratings to reach multiple-kilojoule energy levels without laser-induced damage. As an alternative to large single gratings, we demonstrate that smaller, coherently added (tiled) gratings can be used for subpicosecond-pulse compression. A Fourier-transform-limited, 650-fs chirped-pulse-amplified laser pulse is maintained by replacing a single compression grating with a tiled-grating assembly. Grating tiling provides a means to scale the energy and irradiance of short-pulse lasers.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, IEEE J. Quantum Electron. 24, 398 (1988).
    [CrossRef]
  2. L. Li and J. Hirsh, Opt. Lett. 20, 1349 (1995).
    [CrossRef] [PubMed]
  3. B. W. Shore, M. D. Perry, J. A. Britten, R. D. Boyd, M. D. Feit, H. T. Nguyen, R. Chow, G. E. Loomis, and L. Li, J. Opt. Soc. Am. A 14, 1124 (1997).
    [CrossRef]
  4. 2003 MLD Bulletin [Jobin Yvon (Horiba), Inc., Gratings and OEM Division, Edison, N.J., 2003].
  5. T. Zhang, M. Yonemura, and Y. Kato, Opt. Commun. 145, 367 (1998).
    [CrossRef]
  6. T. J. Kessler, J. Bunkenburg, and H. Huang, “Grating array systems for the alignment and control of the spatial and temporal characteristics of light,” U.S. patent application (filed May12, 2003).
  7. J. Bunkenburg, T. J. Kessler, H. Hu, C. Kellogg, and C. Kelly, in Conference on Lasers and Electro-Optics (CLEO), Vol. 89 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003).

1998

T. Zhang, M. Yonemura, and Y. Kato, Opt. Commun. 145, 367 (1998).
[CrossRef]

1997

1995

1988

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, IEEE J. Quantum Electron. 24, 398 (1988).
[CrossRef]

Bado, P.

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, IEEE J. Quantum Electron. 24, 398 (1988).
[CrossRef]

Boyd, R. D.

Britten, J. A.

Bunkenburg, J.

T. J. Kessler, J. Bunkenburg, and H. Huang, “Grating array systems for the alignment and control of the spatial and temporal characteristics of light,” U.S. patent application (filed May12, 2003).

J. Bunkenburg, T. J. Kessler, H. Hu, C. Kellogg, and C. Kelly, in Conference on Lasers and Electro-Optics (CLEO), Vol. 89 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003).

Chow, R.

Feit, M. D.

Hirsh, J.

Hu, H.

J. Bunkenburg, T. J. Kessler, H. Hu, C. Kellogg, and C. Kelly, in Conference on Lasers and Electro-Optics (CLEO), Vol. 89 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003).

Huang, H.

T. J. Kessler, J. Bunkenburg, and H. Huang, “Grating array systems for the alignment and control of the spatial and temporal characteristics of light,” U.S. patent application (filed May12, 2003).

Kato, Y.

T. Zhang, M. Yonemura, and Y. Kato, Opt. Commun. 145, 367 (1998).
[CrossRef]

Kellogg, C.

J. Bunkenburg, T. J. Kessler, H. Hu, C. Kellogg, and C. Kelly, in Conference on Lasers and Electro-Optics (CLEO), Vol. 89 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003).

Kelly, C.

J. Bunkenburg, T. J. Kessler, H. Hu, C. Kellogg, and C. Kelly, in Conference on Lasers and Electro-Optics (CLEO), Vol. 89 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003).

Kessler, T. J.

J. Bunkenburg, T. J. Kessler, H. Hu, C. Kellogg, and C. Kelly, in Conference on Lasers and Electro-Optics (CLEO), Vol. 89 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003).

T. J. Kessler, J. Bunkenburg, and H. Huang, “Grating array systems for the alignment and control of the spatial and temporal characteristics of light,” U.S. patent application (filed May12, 2003).

Li, L.

Loomis, G. E.

Maine, P.

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, IEEE J. Quantum Electron. 24, 398 (1988).
[CrossRef]

Mourou, G.

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, IEEE J. Quantum Electron. 24, 398 (1988).
[CrossRef]

Nguyen, H. T.

Perry, M. D.

Pessot, M.

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, IEEE J. Quantum Electron. 24, 398 (1988).
[CrossRef]

Shore, B. W.

Strickland, D.

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, IEEE J. Quantum Electron. 24, 398 (1988).
[CrossRef]

Yonemura, M.

T. Zhang, M. Yonemura, and Y. Kato, Opt. Commun. 145, 367 (1998).
[CrossRef]

Zhang, T.

T. Zhang, M. Yonemura, and Y. Kato, Opt. Commun. 145, 367 (1998).
[CrossRef]

IEEE J. Quantum Electron.

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, IEEE J. Quantum Electron. 24, 398 (1988).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Commun.

T. Zhang, M. Yonemura, and Y. Kato, Opt. Commun. 145, 367 (1998).
[CrossRef]

Opt. Lett.

Other

2003 MLD Bulletin [Jobin Yvon (Horiba), Inc., Gratings and OEM Division, Edison, N.J., 2003].

T. J. Kessler, J. Bunkenburg, and H. Huang, “Grating array systems for the alignment and control of the spatial and temporal characteristics of light,” U.S. patent application (filed May12, 2003).

J. Bunkenburg, T. J. Kessler, H. Hu, C. Kellogg, and C. Kelly, in Conference on Lasers and Electro-Optics (CLEO), Vol. 89 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Four-grating compressor with each tiled grating containing three subaperture gratings. TGCs are capable of handling greater laser energy than grating-aperture-limited compressors.

Fig. 2
Fig. 2

Five degrees of freedom between each adjacent pair of gratings within a tiled grating system.

Fig. 3
Fig. 3

Theoretical simulations of the far-field effects from a relative piston phase error between two gratings and experimental verification of the predictions for zero and half-wave errors.

Fig. 4
Fig. 4

Near-diffraction-limited performance obtained with a pair of tiled gratings. The measured focal spot diameter was 1.2 to 1.3 XDL as compared with an Airy-disk diameter corresponding to 84% of the encircled energy.

Fig. 5
Fig. 5

Autocorrelation trace, corresponding to a Fourier-transform-limited, 650-fs CPA laser pulse, maintained by replacing a single compression grating with a tiled-grating assembly. Negligible pulse broadening and distortion were observed.

Metrics