Abstract

A novel implementation of a dispersion-based beam splitter in a photonic crystal (PhC) is proposed. The beam splitter consists of two periodic structures: a nonchannel dispersion-guiding region and a splitting structure operating inside the photonic bandgap. The dispersion-guiding PhC structure is used to route the optical wave by exploiting the dispersion properties of the lattice. An arbitrary power ratio between the output beams can be achieved by varying the parameters of the splitting structure. Within the studied range of splitting structures, high output power was observed and verified experimentally.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. W. Prather, A. Sharkawy, and S. Shi, in Handbook of Nanoscience, Engineering, and Technology, W. A. Goddard, D. W. Brenner, S. E. Lyshevski, and G. J. Iafrate, eds. (CRC Press, Boca Raton, Fla., 2002), pp. 211–232.
  2. A. Sharkawy, S. Shi, and D. W. Prather, Appl. Opt. 41, 7245 (2002).
    [Crossref] [PubMed]
  3. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Phys. Rev. B 58, R10096 (1998).
    [Crossref]
  4. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Appl. Phys. Lett. 74, 1212 (1999).
    [Crossref]
  5. J. Witzens, M. Loncar, and A. Scherer, IEEE J. Sel. Top. Quantum Electron. 8, 1246 (2002).
    [Crossref]
  6. D. N. Chigrin, S. Enoch, S. C. M. Torres, and G. Tayeb, Opt. Express 11, 1203 (2003), http://www.opticsexpress.org .
    [Crossref] [PubMed]
  7. D. W. Prather, S. Shi, D. Pustai, C. Chen, S. Venkataraman, A. Sharkawy, G. Schneider, and J. Murakowski, Opt. Lett. 29, 50 (2004).
    [Crossref] [PubMed]
  8. S. G. Johnson and J. D. Joannopoulos, Opt. Express 8, 173 (2001), http://www.opticsexpress.org .
    [Crossref] [PubMed]
  9. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Norwood, Mass., 2000).

2004 (1)

2003 (1)

2002 (2)

A. Sharkawy, S. Shi, and D. W. Prather, Appl. Opt. 41, 7245 (2002).
[Crossref] [PubMed]

J. Witzens, M. Loncar, and A. Scherer, IEEE J. Sel. Top. Quantum Electron. 8, 1246 (2002).
[Crossref]

2001 (1)

1999 (1)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Appl. Phys. Lett. 74, 1212 (1999).
[Crossref]

1998 (1)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Phys. Rev. B 58, R10096 (1998).
[Crossref]

Chen, C.

Chigrin, D. N.

Enoch, S.

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Norwood, Mass., 2000).

Joannopoulos, J. D.

Johnson, S. G.

Kawakami, S.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Appl. Phys. Lett. 74, 1212 (1999).
[Crossref]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Phys. Rev. B 58, R10096 (1998).
[Crossref]

Kawashima, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Appl. Phys. Lett. 74, 1212 (1999).
[Crossref]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Phys. Rev. B 58, R10096 (1998).
[Crossref]

Kosaka, H.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Appl. Phys. Lett. 74, 1212 (1999).
[Crossref]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Phys. Rev. B 58, R10096 (1998).
[Crossref]

Loncar, M.

J. Witzens, M. Loncar, and A. Scherer, IEEE J. Sel. Top. Quantum Electron. 8, 1246 (2002).
[Crossref]

Murakowski, J.

Notomi, M.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Appl. Phys. Lett. 74, 1212 (1999).
[Crossref]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Phys. Rev. B 58, R10096 (1998).
[Crossref]

Prather, D. W.

D. W. Prather, S. Shi, D. Pustai, C. Chen, S. Venkataraman, A. Sharkawy, G. Schneider, and J. Murakowski, Opt. Lett. 29, 50 (2004).
[Crossref] [PubMed]

A. Sharkawy, S. Shi, and D. W. Prather, Appl. Opt. 41, 7245 (2002).
[Crossref] [PubMed]

D. W. Prather, A. Sharkawy, and S. Shi, in Handbook of Nanoscience, Engineering, and Technology, W. A. Goddard, D. W. Brenner, S. E. Lyshevski, and G. J. Iafrate, eds. (CRC Press, Boca Raton, Fla., 2002), pp. 211–232.

Pustai, D.

Sato, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Appl. Phys. Lett. 74, 1212 (1999).
[Crossref]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Phys. Rev. B 58, R10096 (1998).
[Crossref]

Scherer, A.

J. Witzens, M. Loncar, and A. Scherer, IEEE J. Sel. Top. Quantum Electron. 8, 1246 (2002).
[Crossref]

Schneider, G.

Sharkawy, A.

D. W. Prather, S. Shi, D. Pustai, C. Chen, S. Venkataraman, A. Sharkawy, G. Schneider, and J. Murakowski, Opt. Lett. 29, 50 (2004).
[Crossref] [PubMed]

A. Sharkawy, S. Shi, and D. W. Prather, Appl. Opt. 41, 7245 (2002).
[Crossref] [PubMed]

D. W. Prather, A. Sharkawy, and S. Shi, in Handbook of Nanoscience, Engineering, and Technology, W. A. Goddard, D. W. Brenner, S. E. Lyshevski, and G. J. Iafrate, eds. (CRC Press, Boca Raton, Fla., 2002), pp. 211–232.

Shi, S.

D. W. Prather, S. Shi, D. Pustai, C. Chen, S. Venkataraman, A. Sharkawy, G. Schneider, and J. Murakowski, Opt. Lett. 29, 50 (2004).
[Crossref] [PubMed]

A. Sharkawy, S. Shi, and D. W. Prather, Appl. Opt. 41, 7245 (2002).
[Crossref] [PubMed]

D. W. Prather, A. Sharkawy, and S. Shi, in Handbook of Nanoscience, Engineering, and Technology, W. A. Goddard, D. W. Brenner, S. E. Lyshevski, and G. J. Iafrate, eds. (CRC Press, Boca Raton, Fla., 2002), pp. 211–232.

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Norwood, Mass., 2000).

Tamamura, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Appl. Phys. Lett. 74, 1212 (1999).
[Crossref]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Phys. Rev. B 58, R10096 (1998).
[Crossref]

Tayeb, G.

Tomita, A.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Appl. Phys. Lett. 74, 1212 (1999).
[Crossref]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Phys. Rev. B 58, R10096 (1998).
[Crossref]

Torres, S. C. M.

Venkataraman, S.

Witzens, J.

J. Witzens, M. Loncar, and A. Scherer, IEEE J. Sel. Top. Quantum Electron. 8, 1246 (2002).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Appl. Phys. Lett. 74, 1212 (1999).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Witzens, M. Loncar, and A. Scherer, IEEE J. Sel. Top. Quantum Electron. 8, 1246 (2002).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (1)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Phys. Rev. B 58, R10096 (1998).
[Crossref]

Other (2)

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Norwood, Mass., 2000).

D. W. Prather, A. Sharkawy, and S. Shi, in Handbook of Nanoscience, Engineering, and Technology, W. A. Goddard, D. W. Brenner, S. E. Lyshevski, and G. J. Iafrate, eds. (CRC Press, Boca Raton, Fla., 2002), pp. 211–232.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Beam-splitting structure consisting of a nonchannel dispersion-guiding structure and a beam-splitting structure.

Fig. 2
Fig. 2

(a) EFCs for the second band with a radius of the airhole of 0.3a. (b) Stop band map for a square lattice as the radii of the airholes vary. (c) EFCs at frequency 0.26c/a with different radii of the airholes.

Fig. 3
Fig. 3

Steady-state result of magnetic field with radii of airholes of (a) 0.42a and (b) 0.36a.

Fig. 4
Fig. 4

Percentages of output optical power of port 1 and port 2 vary with the radii of the airholes of the splitting structure.

Fig. 5
Fig. 5

(a) Scanning electron micrograph of the dispersion-guiding structure and beam-splitting region. Top-down view of the dispersion-splitting structure at (b) λ=1482 nm and (c) λ=1503 nm.

Metrics