Abstract

We study the second-harmonic generation and localization of light in a reconfigurable waveguide induced by an optical vortex soliton in a defocusing Kerr medium. We show that the vortex-induced waveguide greatly improves conversion efficiency from the fundamental to the second-harmonic field.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Yu. S. Kivshar and G. P. Agrawal, Optical Solitons: from Fibers to Photonic Crystals (Academic, San Diego, Calif., 2003).
  2. R. de la Fuente and A. Barthelemy, IEEE J. Quantum Electron. 28, 547 (1992).
    [CrossRef]
  3. B. Luther-Davies and Y. Xiaoping, Opt. Lett. 17, 496 (1992).
    [CrossRef] [PubMed]
  4. M. Morin, G. Duree, G. Salamo, and M. Segev, Opt. Lett. 20, 2066 (1995).
    [CrossRef] [PubMed]
  5. J. U. Kang, G. I. Stegeman, and J. S. Aitchison, Opt. Lett. 20, 2069 (1995).
    [CrossRef] [PubMed]
  6. S. Lan, M. Shih, G. Mizell, J. A. Giordmaine, Z. Chen, C. Anastassiou, J. Martin, and M. Segev, Opt. Lett. 24, 1145 (1999).
    [CrossRef]
  7. A. Guo, M. Henry, G. J. Salamo, M. Segev, and G. L. Wood, Opt. Lett. 26, 1274 (2001).
    [CrossRef]
  8. S. Lan, J. A. Giordmaine, M. Segev, and D. Rytz, Opt. Lett. 27, 737 (2002).
    [CrossRef]
  9. G. A. Swartzlander and C. Law, Phys. Rev. Lett. 69, 2503 (1992).
    [CrossRef] [PubMed]
  10. C. T. Law, X. Zhang, and G. A. Swartzlander, Opt. Lett. 25, 55 (2000).
    [CrossRef]
  11. A. H. Carlsson, J. N. Malmberg, D. Anderson, M. Lisak, E. A. Ostrovskaya, T. J. Alexander, and Yu. S. Kivshar, Opt. Lett. 25, 660 (2000).
    [CrossRef]
  12. O. Bang, Yu. S. Kivshar, and A. V. Buryak, Opt. Lett. 22, 1680 (1997).
    [CrossRef]

2002 (1)

2001 (1)

2000 (2)

1999 (1)

1997 (1)

1995 (2)

1992 (3)

R. de la Fuente and A. Barthelemy, IEEE J. Quantum Electron. 28, 547 (1992).
[CrossRef]

B. Luther-Davies and Y. Xiaoping, Opt. Lett. 17, 496 (1992).
[CrossRef] [PubMed]

G. A. Swartzlander and C. Law, Phys. Rev. Lett. 69, 2503 (1992).
[CrossRef] [PubMed]

Agrawal, G. P.

Yu. S. Kivshar and G. P. Agrawal, Optical Solitons: from Fibers to Photonic Crystals (Academic, San Diego, Calif., 2003).

Aitchison, J. S.

Alexander, T. J.

Anastassiou, C.

Anderson, D.

Bang, O.

Barthelemy, A.

R. de la Fuente and A. Barthelemy, IEEE J. Quantum Electron. 28, 547 (1992).
[CrossRef]

Buryak, A. V.

Carlsson, A. H.

Chen, Z.

de la Fuente, R.

R. de la Fuente and A. Barthelemy, IEEE J. Quantum Electron. 28, 547 (1992).
[CrossRef]

Duree, G.

Giordmaine, J. A.

Guo, A.

Henry, M.

Kang, J. U.

Kivshar, Yu. S.

Lan, S.

Law, C.

G. A. Swartzlander and C. Law, Phys. Rev. Lett. 69, 2503 (1992).
[CrossRef] [PubMed]

Law, C. T.

Lisak, M.

Luther-Davies, B.

Malmberg, J. N.

Martin, J.

Mizell, G.

Morin, M.

Ostrovskaya, E. A.

Rytz, D.

Salamo, G.

Salamo, G. J.

Segev, M.

Shih, M.

Stegeman, G. I.

Swartzlander, G. A.

C. T. Law, X. Zhang, and G. A. Swartzlander, Opt. Lett. 25, 55 (2000).
[CrossRef]

G. A. Swartzlander and C. Law, Phys. Rev. Lett. 69, 2503 (1992).
[CrossRef] [PubMed]

Wood, G. L.

Xiaoping, Y.

Zhang, X.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Spatial profiles of the three-wave vector soliton components for points A–F marked in Fig. 2. Shown are vortex amplitude ur (thinner solid curves), fundamental field wr (thicker solid curves), and SH field vr (dashed curves) at the indicated values of β and λ.

Fig. 2
Fig. 2

Region of existence (shaded) of the three-component vector solitons of model Eq. (1) in plane λ,β. Marked points correspond to the modes shown in Fig. 1.

Fig. 3
Fig. 3

Examples of SHG in the vortex-induced waveguide with no SH field at the input and parameters that correspond to point D (top) and to point E (bottom) in Figs. 1 and 2. Note the differences in scale between the top and bottom rows.

Fig. 4
Fig. 4

Gray-scaled images of the vortex waveguide and the guided modes for SHG. Initial conditions correspond to a vortex carried by a Gaussian beam and the fundamental wave, both of which correspond to point D in Fig. 2.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

iuz+Δu-u2+σw2+ρv2u=0, iwz+Δw+w*v-σu2w=0, 2ivz+Δv-βv+12w2-ρu2v=0,
Δru-1/r2u+u-u2+2w2+8v2u=0, Δrw-λw+wv-2u2w=0, Δrv-4λ+βv+½w2-8u2v=0,

Metrics