Abstract

We report a new class of high-dispersion immersed diffraction gratings for which the reflective nature of the diffraction is provided by the phenomenon of total internal reflection (TIR) regardless of grating tooth shape. Thus, the component can be fabricated from a single dielectric material and requires no metallic or dielectric film layers for high reflection diffraction efficiency. With the absence of metallic absorption, diffraction efficiencies of these TIR gratings can reach more than 99% for 15–20-nm spectral bandwidths, making them suitable for many laser-based technologies.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. F. Mollenauer, J. C. White, and C. R. Pollock, eds., Tunable Lasers, 2nd ed. (Springer-Verlag, Berlin, 1992).
    [CrossRef]
  2. W. Rudolph and B. Wilhelmi, Light Pulse Compression (Harwood Academic, Chur, Switzerland, 1989).
  3. S. J. Augst, A. K. Goyal, R. L. Aggarwal, T. Y. Fan, and A. Sanchez, Opt. Lett. 28, 331 (2003).
    [CrossRef] [PubMed]
  4. E. G. Loewen and E. Popov, Diffraction Gratings and Applications (Marcel Dekker, New York, 1997).
  5. The complete vector formula can be found in G. H. Spencer and M. V. R. K. Murty, J. Opt. Soc. Am. 52, 672 (1962).
  6. B. W. Shore, M. D. Perry, J. A. Britten, R. D. Boyd, M. D. Feit, H. T. Nguyen, R. Chow, and L. Li, J. Opt. Soc. Am. A 14, 1124 (1997).
    [CrossRef]
  7. K. Hehl, J. Bischoff, U. Mohaupt, M. Palme, B. Schna-bel, L. Wenke, R. Boedefeld, W. Theobald, E. Welsch, R. Sauerbrey, and H. Heyer, Appl. Opt. 38, 6257 (1999).
    [CrossRef]
  8. M. S. D. Smith and K. A. McGreer, IEEE Photon. Technol. Lett. 11, 84 (1999).
    [CrossRef]
  9. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1991).
  10. M. G. Moharam and T. K. Gaylord, J. Opt. Soc. Am. 72, 1285 (1982).

2003 (1)

1999 (2)

1997 (1)

1982 (1)

M. G. Moharam and T. K. Gaylord, J. Opt. Soc. Am. 72, 1285 (1982).

1962 (1)

Aggarwal, R. L.

Augst, S. J.

Bischoff, J.

Boedefeld, R.

Born, M.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1991).

Boyd, R. D.

Britten, J. A.

Chow, R.

Fan, T. Y.

Feit, M. D.

Gaylord, T. K.

M. G. Moharam and T. K. Gaylord, J. Opt. Soc. Am. 72, 1285 (1982).

Goyal, A. K.

Hehl, K.

Heyer, H.

Li, L.

Loewen, E. G.

E. G. Loewen and E. Popov, Diffraction Gratings and Applications (Marcel Dekker, New York, 1997).

McGreer, K. A.

M. S. D. Smith and K. A. McGreer, IEEE Photon. Technol. Lett. 11, 84 (1999).
[CrossRef]

Moharam, M. G.

M. G. Moharam and T. K. Gaylord, J. Opt. Soc. Am. 72, 1285 (1982).

Mohaupt, U.

Murty, M. V. R. K.

Nguyen, H. T.

Palme, M.

Perry, M. D.

Popov, E.

E. G. Loewen and E. Popov, Diffraction Gratings and Applications (Marcel Dekker, New York, 1997).

Rudolph, W.

W. Rudolph and B. Wilhelmi, Light Pulse Compression (Harwood Academic, Chur, Switzerland, 1989).

Sanchez, A.

Sauerbrey, R.

Schna-bel, B.

Shore, B. W.

Smith, M. S. D.

M. S. D. Smith and K. A. McGreer, IEEE Photon. Technol. Lett. 11, 84 (1999).
[CrossRef]

Spencer, G. H.

Theobald, W.

Welsch, E.

Wenke, L.

Wilhelmi, B.

W. Rudolph and B. Wilhelmi, Light Pulse Compression (Harwood Academic, Chur, Switzerland, 1989).

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1991).

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (1)

M. S. D. Smith and K. A. McGreer, IEEE Photon. Technol. Lett. 11, 84 (1999).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (1)

Opt. Lett. (1)

Other (4)

E. G. Loewen and E. Popov, Diffraction Gratings and Applications (Marcel Dekker, New York, 1997).

L. F. Mollenauer, J. C. White, and C. R. Pollock, eds., Tunable Lasers, 2nd ed. (Springer-Verlag, Berlin, 1992).
[CrossRef]

W. Rudolph and B. Wilhelmi, Light Pulse Compression (Harwood Academic, Chur, Switzerland, 1989).

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Depiction of a high-dispersion TIR grating. Light is incident from material 1 at angle θi, and K is the grating vector.

Fig. 2
Fig. 2

Diffraction efficiencies of TIR and metallic binary diffraction gratings with the same dispersion as a function of incident wavelength for angles of incidence of 59.69° (TIR) and 67.95° (metallic) and at the Littrow condition for each grating, for the grating parameters given in the text and for incident light that is TM polarized.

Fig. 3
Fig. 3

Diffraction efficiencies of TIR and metallic binary diffraction gratings with the same dispersion as a function of incident angle for TM-polarized incident light with a wavelength of 1064 nm, for the grating parameters given in the text. The angle of incidence on the horizontal axis is given with respect to the respective Littrow angle for each grating.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n1 sinθi+no sinθm+mλΛ=0,
n2/n1<sin θj<1,
n1>λ2Λ>n2.
D=dθmdλdθairdθmNormal=mΛ cosθm.

Metrics