Abstract

Coupling femtosecond light pulses from an all-fiber Er:laser system into a dispersion-shifted and highly nonlinear fiber, we generate output spectra exhibiting two broadband and mutually coherent maxima. Depending on the chirp of the input pulse, the spectral separation is easily tunable over a wide range up to values exceeding 100 THz. In this way, the source provides access to an ultrabroadband wavelength interval from 1130 to 1950 nm. Because of soliton effects, the long-wave component exhibits a transform-limited pulse width of 40 fs directly after the nonlinear element. The high-frequency part propagating in the dispersive regime is recompressed to pulse durations as short as 24 fs with an optimized prism sequence.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Tamura, H. A. Haus, and E. P. Ippen, Electron. Lett. 28, 2226 (1992).
    [CrossRef]
  2. L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, Appl. Phys. B 65, 277 (1997).
    [CrossRef]
  3. H. Lim, F. Ö. Ilday, and F. W. Wise, Opt. Express 10, 1497 (2002), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  4. J. Limpert, T. Schreiber, T. Clausnitzer, K. Zöllner, H.-J. Fuchs, E.-B. Kley, H. Zellmer, and A. Tünnermann, Opt. Express 10, 628 (2002), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  5. F. Tauser, A. Leitenstorfer, and W. Zinth, Opt. Express 11, 594 (2003), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  6. N. Nishizawa, R. Okamura, and T. Goto, Jpn. J. Appl. Phys. 39, L409 (2000).
    [CrossRef]
  7. T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, IEEE J. Sel. Top. Quantum Electron. 5, 1385 (1999).
    [CrossRef]
  8. K. W. DeLong, R. Trebino, J. Hunter, and W. E. White, J. Opt. Soc. Am. B 11, 2206 (1994).
    [CrossRef]
  9. K. L. Sala, G. A. Kenney-Wallace, and G. E. Hall, IEEE J. Quantum Electron. QE-16, 990 (1980).
    [CrossRef]
  10. A. V. Husakou and J. Hermann, Phys. Rev. Lett. 87, 203901 (2001).
    [CrossRef]
  11. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, Phys. Rev. Lett. 88, 173901 (2002).
    [CrossRef]
  12. P. K. A. Wai, C. R. Menyuk, H. H. Chen, and Y. C. Lee, Opt. Lett. 12, 628 (1987).
    [CrossRef] [PubMed]
  13. N. Akhmediev and M. Karlsson, Phys. Rev. A 51, 2602 (1995).
    [CrossRef] [PubMed]
  14. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 2001).

2003 (1)

2002 (3)

2001 (1)

A. V. Husakou and J. Hermann, Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef]

2000 (1)

N. Nishizawa, R. Okamura, and T. Goto, Jpn. J. Appl. Phys. 39, L409 (2000).
[CrossRef]

1999 (1)

T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, IEEE J. Sel. Top. Quantum Electron. 5, 1385 (1999).
[CrossRef]

1997 (1)

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, Appl. Phys. B 65, 277 (1997).
[CrossRef]

1995 (1)

N. Akhmediev and M. Karlsson, Phys. Rev. A 51, 2602 (1995).
[CrossRef] [PubMed]

1994 (1)

1992 (1)

K. Tamura, H. A. Haus, and E. P. Ippen, Electron. Lett. 28, 2226 (1992).
[CrossRef]

1987 (1)

1980 (1)

K. L. Sala, G. A. Kenney-Wallace, and G. E. Hall, IEEE J. Quantum Electron. QE-16, 990 (1980).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 2001).

Akhmediev, N.

N. Akhmediev and M. Karlsson, Phys. Rev. A 51, 2602 (1995).
[CrossRef] [PubMed]

Chen, H. H.

Clausnitzer, T.

DeLong, K. W.

Fuchs, H.-J.

Goto, T.

N. Nishizawa, R. Okamura, and T. Goto, Jpn. J. Appl. Phys. 39, L409 (2000).
[CrossRef]

Griebner, U.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

Hall, G. E.

K. L. Sala, G. A. Kenney-Wallace, and G. E. Hall, IEEE J. Quantum Electron. QE-16, 990 (1980).
[CrossRef]

Haus, H. A.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, Appl. Phys. B 65, 277 (1997).
[CrossRef]

K. Tamura, H. A. Haus, and E. P. Ippen, Electron. Lett. 28, 2226 (1992).
[CrossRef]

Hermann, J.

A. V. Husakou and J. Hermann, Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef]

Herrmann, J.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

Hunter, J.

Husakou, A.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

Husakou, A. V.

A. V. Husakou and J. Hermann, Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef]

Ilday, F. Ö.

Ippen, E. P.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, Appl. Phys. B 65, 277 (1997).
[CrossRef]

K. Tamura, H. A. Haus, and E. P. Ippen, Electron. Lett. 28, 2226 (1992).
[CrossRef]

Ishikawa, S.

T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, IEEE J. Sel. Top. Quantum Electron. 5, 1385 (1999).
[CrossRef]

Jones, D. J.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, Appl. Phys. B 65, 277 (1997).
[CrossRef]

Karlsson, M.

N. Akhmediev and M. Karlsson, Phys. Rev. A 51, 2602 (1995).
[CrossRef] [PubMed]

Kashiwada, T.

T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, IEEE J. Sel. Top. Quantum Electron. 5, 1385 (1999).
[CrossRef]

Kenney-Wallace, G. A.

K. L. Sala, G. A. Kenney-Wallace, and G. E. Hall, IEEE J. Quantum Electron. QE-16, 990 (1980).
[CrossRef]

Kley, E.-B.

Knight, J. C.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

Korn, G.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

Lee, Y. C.

Leitenstorfer, A.

Lim, H.

Limpert, J.

Menyuk, C. R.

Nelson, L. E.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, Appl. Phys. B 65, 277 (1997).
[CrossRef]

Nickel, D.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

Nishimura, M.

T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, IEEE J. Sel. Top. Quantum Electron. 5, 1385 (1999).
[CrossRef]

Nishizawa, N.

N. Nishizawa, R. Okamura, and T. Goto, Jpn. J. Appl. Phys. 39, L409 (2000).
[CrossRef]

Okamura, R.

N. Nishizawa, R. Okamura, and T. Goto, Jpn. J. Appl. Phys. 39, L409 (2000).
[CrossRef]

Okuno, T.

T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, IEEE J. Sel. Top. Quantum Electron. 5, 1385 (1999).
[CrossRef]

Onishi, M.

T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, IEEE J. Sel. Top. Quantum Electron. 5, 1385 (1999).
[CrossRef]

Russell, P. St. J.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

Sala, K. L.

K. L. Sala, G. A. Kenney-Wallace, and G. E. Hall, IEEE J. Quantum Electron. QE-16, 990 (1980).
[CrossRef]

Schreiber, T.

Tamura, K.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, Appl. Phys. B 65, 277 (1997).
[CrossRef]

K. Tamura, H. A. Haus, and E. P. Ippen, Electron. Lett. 28, 2226 (1992).
[CrossRef]

Tauser, F.

Trebino, R.

Tünnermann, A.

Wadsworth, W. J.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

Wai, P. K. A.

White, W. E.

Wise, F. W.

Zellmer, H.

Zhavoronkov, N.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

Zinth, W.

Zöllner, K.

Appl. Phys. B (1)

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, Appl. Phys. B 65, 277 (1997).
[CrossRef]

Electron. Lett. (1)

K. Tamura, H. A. Haus, and E. P. Ippen, Electron. Lett. 28, 2226 (1992).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. L. Sala, G. A. Kenney-Wallace, and G. E. Hall, IEEE J. Quantum Electron. QE-16, 990 (1980).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, IEEE J. Sel. Top. Quantum Electron. 5, 1385 (1999).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

N. Nishizawa, R. Okamura, and T. Goto, Jpn. J. Appl. Phys. 39, L409 (2000).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. A (1)

N. Akhmediev and M. Karlsson, Phys. Rev. A 51, 2602 (1995).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

A. V. Husakou and J. Hermann, Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup. The prechirp is adjusted with a Si prism sequence. After the nonlinear fiber, the output may either be characterized directly or after passage through an SF-10 prism compressor.

Fig. 2
Fig. 2

(a) Input spectrum as derived from the Er:fiber amplifier. (b)–(e) Output spectra of the nonlinear fiber (solid curves). From top to bottom, the linear chirp on the input pulse amounts to 1260, 1070, 790, and 0 fs2. In the right-hand column, the spectral phase as obtained by FROG is shown (dashed curves).

Fig. 3
Fig. 3

(a) Temporal intensity (solid curve) and phase (dashed curve) trace of a pulse after compression with the SF-10 prism sequence. (b) Corresponding spectral intensity (solid curve) and phase (dashed curve) as a function of frequency (bottom axis) and wavelength (top axis).

Fig. 4
Fig. 4

(a)–(c) Calculated output spectra (black curve) from 7 cm of nonlinear fiber for various amounts of prechirp. For the input, we assumed a Gaussian pulse with a duration of 65 fs (FWHM) at zero chirp. For comparison, the gray curve in (a) depicts the input spectrum, scaled by a factor of 3. Parameters entering the simulations are the second- and third-order dispersion coefficients, β2=-1.21 ps2/km and β3=0.02 ps3/km, respectively, and nonlinearity parameter γ=20 km W-1. Details of the model are described in Ref. 14.

Metrics