Abstract

We demonstrate a novel method for spectral analysis of microwave signals that employs time-domain processing in fiber. We use anomalous dispersion in single-mode fiber to perform a Fresnel transform followed by a matched amount of dispersion-compensating fiber to perform an inverse Fresnel transform of an ultrashort pulse. After the Fresnel-transformed waveform is modulated by the microwave signal, the waveform at the output of the dispersion-compensating fiber represents the ultrashort pulse convolved with the microwave spectrum. An experimental system for spectral analysis of microwave signals in the range 6–21 GHz is demonstrated.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Zmuda and E. N. Toughlian, Photonic Aspects of Modern Radar (Artech House, Boston, Mass., 1994).
  2. B. B. Hu and M. C. Nuss, Opt. Lett. 20, 1716 (1995).
    [CrossRef]
  3. A. J. Seeds, in International Topical Meeting on Microwave Photonics (The Institute of Electronics, Information, and Communication Engineers, Tokyo, 2002), pp. 17–20.
    [CrossRef]
  4. V. Lavielle, I. Lorgeré, J.-L. Le Gouët, S. Tonda, and D. Dolfi, Opt. Lett. 28, 384 (2003).
    [CrossRef] [PubMed]
  5. J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
    [CrossRef]
  6. N. K. Berger, B. Levit, S. Atkins, and B. Fischer, Electron. Lett. 36, 1644 (2000).
    [CrossRef]
  7. B. H. Kolner, IEEE J. Quantum Electron. 30, 1951 (1994).
    [CrossRef]
  8. Y. C. Tong, L. Y. Chan, and H. K. Tsang, Electron. Lett. 33, 983 (1997).
    [CrossRef]
  9. M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, Science 298, 1401 (2002).
    [CrossRef] [PubMed]
  10. K. G. Purchase, D. J. Brady, and K. Wagner, Opt. Lett. 18, 2129 (1993).
    [CrossRef]
  11. P. C. Sun, Y. T. Mazurenko, and Y. Fainman, J. Opt. Soc. Am. A 14, 1159 (1997).
    [CrossRef]

2003 (2)

2002 (1)

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, Science 298, 1401 (2002).
[CrossRef] [PubMed]

2000 (1)

N. K. Berger, B. Levit, S. Atkins, and B. Fischer, Electron. Lett. 36, 1644 (2000).
[CrossRef]

1997 (2)

P. C. Sun, Y. T. Mazurenko, and Y. Fainman, J. Opt. Soc. Am. A 14, 1159 (1997).
[CrossRef]

Y. C. Tong, L. Y. Chan, and H. K. Tsang, Electron. Lett. 33, 983 (1997).
[CrossRef]

1995 (1)

1994 (1)

B. H. Kolner, IEEE J. Quantum Electron. 30, 1951 (1994).
[CrossRef]

1993 (1)

Atkins, S.

N. K. Berger, B. Levit, S. Atkins, and B. Fischer, Electron. Lett. 36, 1644 (2000).
[CrossRef]

Berger, N. K.

N. K. Berger, B. Levit, S. Atkins, and B. Fischer, Electron. Lett. 36, 1644 (2000).
[CrossRef]

Brady, D. J.

Chan, L. Y.

Y. C. Tong, L. Y. Chan, and H. K. Tsang, Electron. Lett. 33, 983 (1997).
[CrossRef]

Chou, J.

J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
[CrossRef]

Dolfi, D.

Erben, C.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, Science 298, 1401 (2002).
[CrossRef] [PubMed]

Fainman, Y.

Fischer, B.

N. K. Berger, B. Levit, S. Atkins, and B. Fischer, Electron. Lett. 36, 1644 (2000).
[CrossRef]

Gill, D. M.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, Science 298, 1401 (2002).
[CrossRef] [PubMed]

Gopalan, P.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, Science 298, 1401 (2002).
[CrossRef] [PubMed]

Han, Y.

J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
[CrossRef]

Heber, J. D.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, Science 298, 1401 (2002).
[CrossRef] [PubMed]

Hu, B. B.

Jalali, B.

J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
[CrossRef]

Katz, H. E.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, Science 298, 1401 (2002).
[CrossRef] [PubMed]

Kolner, B. H.

B. H. Kolner, IEEE J. Quantum Electron. 30, 1951 (1994).
[CrossRef]

Lavielle, V.

Le Gouët, J.-L.

Lee, M.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, Science 298, 1401 (2002).
[CrossRef] [PubMed]

Levit, B.

N. K. Berger, B. Levit, S. Atkins, and B. Fischer, Electron. Lett. 36, 1644 (2000).
[CrossRef]

Lorgeré, I.

Mazurenko, Y. T.

McGee, D. J.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, Science 298, 1401 (2002).
[CrossRef] [PubMed]

Nuss, M. C.

Purchase, K. G.

Seeds, A. J.

A. J. Seeds, in International Topical Meeting on Microwave Photonics (The Institute of Electronics, Information, and Communication Engineers, Tokyo, 2002), pp. 17–20.
[CrossRef]

Sun, P. C.

Tonda, S.

Tong, Y. C.

Y. C. Tong, L. Y. Chan, and H. K. Tsang, Electron. Lett. 33, 983 (1997).
[CrossRef]

Toughlian, E. N.

H. Zmuda and E. N. Toughlian, Photonic Aspects of Modern Radar (Artech House, Boston, Mass., 1994).

Tsang, H. K.

Y. C. Tong, L. Y. Chan, and H. K. Tsang, Electron. Lett. 33, 983 (1997).
[CrossRef]

Wagner, K.

Zmuda, H.

H. Zmuda and E. N. Toughlian, Photonic Aspects of Modern Radar (Artech House, Boston, Mass., 1994).

Electron. Lett. (2)

N. K. Berger, B. Levit, S. Atkins, and B. Fischer, Electron. Lett. 36, 1644 (2000).
[CrossRef]

Y. C. Tong, L. Y. Chan, and H. K. Tsang, Electron. Lett. 33, 983 (1997).
[CrossRef]

IEEE J. Quantum Electron. (1)

B. H. Kolner, IEEE J. Quantum Electron. 30, 1951 (1994).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Lett. (3)

Science (1)

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, Science 298, 1401 (2002).
[CrossRef] [PubMed]

Other (2)

H. Zmuda and E. N. Toughlian, Photonic Aspects of Modern Radar (Artech House, Boston, Mass., 1994).

A. J. Seeds, in International Topical Meeting on Microwave Photonics (The Institute of Electronics, Information, and Communication Engineers, Tokyo, 2002), pp. 17–20.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

General microwave analyzer approach to microwave spectrum analysis by use of dispersive fiber for signal processing.

Fig. 2
Fig. 2

(a) Interferometric correlation, showing microwave signal at fm=7 GHz. (b) Intensity correlation reveals the enhancement of second and third harmonics from nonlinear modulation.

Fig. 3
Fig. 3

(a) Interferometric correlation for 6-GHz modulation. (b) Intensity correlation.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Uz,t=-U0,texpjBt-t2dt,
Ucz,t=-Vt-U0,texpjBt-t2dt×exp-jBt-t2dt.
Ucz,t=exp-jBt2-×-V˜texpj2Bt-ttdtU0,t×expjBt2dt.
Ucz,t=exp-jBt2-VB/πt-t×U0,texpjBt2dt.
Vt=exp-jϕ×1+n=-Jnamexpjbm+2πnfmt,

Metrics