Abstract

We propose a new method for generating a parabolic pulse by use of a dispersion-decreasing fiber with normal group-velocity dispersion. When a hyperbolic dispersion-decreasing structure is employed, the pulse evolves into a linearly chirped pulse with an exact parabolic intensity profile without radiating dispersive waves. The highly linear chirp in the parabolic pulse allows for efficient and high-quality pulse compression.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Treacy, IEEE J. Quantum Electron. QE-5, 454 (1969).
    [CrossRef]
  2. W. J. Tomlinson, R. J. Stolen, and C. V. Shank, J. Opt. Soc. Am. B 1, 139 (1984).
    [CrossRef]
  3. W. J. Tomlinson, R. H. Stolen, and A. M. Johnson, Opt. Lett. 10, 457 (1985).
    [CrossRef] [PubMed]
  4. D. Anderson, M. Desaix, M. Karlsson, M. Lisak, and M. L. Quiroga-Teixeiro, J. Opt. Soc. Am. B 10, 1185 (1993).
    [CrossRef]
  5. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, Phys. Rev. Lett. 84, 6010 (2000).
    [CrossRef] [PubMed]
  6. K. Tamura and M. Nakazawa, Opt. Lett. 21, 68 (1996).
    [CrossRef] [PubMed]
  7. J. H. V. Price, W. Belardi, T. M. Monro, A. Malinowski, A. Piper, and D. J. Richardson, Opt. Express 10, 382 (2002), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  8. J. Limpert, T. Schreiber, T. Clausnitzer, K. Zöllner, H.-J. Fuchs, E.-B. Kley, H. Zellmer, and A. Tünnermann, Opt. Express 10, 628 (2002), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  9. E. M. Dianov, P. V. Mamyshev, A. M. Prokhorov, and S. V. Chernikov, Opt. Lett. 14, 1008 (1989).
    [CrossRef] [PubMed]
  10. K. R. Tamura and M. Nakazawa, Opt. Lett. 26, 762 (2001).
    [CrossRef]
  11. S. V. Chernikov and P. V. Mamyshev, J. Opt. Soc. Am. B 8, 1633 (1991).
    [CrossRef]

2002

2001

2000

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, Phys. Rev. Lett. 84, 6010 (2000).
[CrossRef] [PubMed]

1996

1993

1991

1989

1985

1984

1969

E. Treacy, IEEE J. Quantum Electron. QE-5, 454 (1969).
[CrossRef]

Anderson, D.

Belardi, W.

Chernikov, S. V.

Clausnitzer, T.

Desaix, M.

Dianov, E. M.

Dudley, J. M.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, Phys. Rev. Lett. 84, 6010 (2000).
[CrossRef] [PubMed]

Fermann, M. E.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, Phys. Rev. Lett. 84, 6010 (2000).
[CrossRef] [PubMed]

Fuchs, H.-J.

Harvey, J. D.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, Phys. Rev. Lett. 84, 6010 (2000).
[CrossRef] [PubMed]

Johnson, A. M.

Karlsson, M.

Kley, E.-B.

Kruglov, V. I.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, Phys. Rev. Lett. 84, 6010 (2000).
[CrossRef] [PubMed]

Limpert, J.

Lisak, M.

Malinowski, A.

Mamyshev, P. V.

Monro, T. M.

Nakazawa, M.

Piper, A.

Price, J. H. V.

Prokhorov, A. M.

Quiroga-Teixeiro, M. L.

Richardson, D. J.

Schreiber, T.

Shank, C. V.

Stolen, R. H.

Stolen, R. J.

Tamura, K.

Tamura, K. R.

Thomsen, B. C.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, Phys. Rev. Lett. 84, 6010 (2000).
[CrossRef] [PubMed]

Tomlinson, W. J.

Treacy, E.

E. Treacy, IEEE J. Quantum Electron. QE-5, 454 (1969).
[CrossRef]

Tünnermann, A.

Zellmer, H.

Zöllner, K.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Dispersion profile of the ND-DDF represented by Eq. (4) with Γ0=0.028 m-1 and (b) pulse evolution in the ND-DDF (solid curves) compared with the asymptotic evolution (dotted curves) predicted by Eqs. (5) and (6).

Fig. 2
Fig. 2

Output parabolic pulse generated in the ND-DDF in Fig. 1(a). (a) Waveform and frequency chirp of the output pulse, obtained numerically (solid curves) and analytically (dashed curves). (b) Output spectrum. (c) Waveform of the compressed pulse (thick solid curve), the initial pulse (thin solid curve), and the parabolic pulse before compression (dotted curve). (d) Curves in (c) plotted on a log scale.

Fig. 3
Fig. 3

Parabolic pulse generation with a ND-DDF approximated by two linearly tapered fibers. (a) Dispersion profile of the approximated ND-DDF (solid curve) and the exact profile (dotted curve). (b) Waveform and frequency chirp of the output pulse (solid curves) and the asymptotic solution (dashed curves). (c) Output spectrum.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

iqz-β22Dz2qt2+γq2q=0,
iqξ-β222qt2+γDξq2q=0.
iuξ-β222ut2+γu2u=iΓξ2u,Γξ=-1DdDdξ=-1D2dDdz.
Dz=11+Γ0z
qz,tPz1-tτz21/2expiφz,t,tτz0,t>τz,z,
Pz=E02/342Γ02γβ21+Γ0z1/3,
τz=3E01/3γβ21+Γ0z2Γ021/3,
φz,t=-Γ06β2t2+γ0zPzdz,
Wz=43Pzτz=E0.
cz=-φz,tt=Γ03β2t.

Metrics