Abstract

An experiment was performed on a new gray-scale mask material. The mask material is carbon based and has high attenuation in the deep ultraviolet spectral range. The experiment involves making a gray-scale mask for an axicon. Preliminary results show that gray-scale profiles of accurate transmittance functions can be fabricated. Potentially, the capability at deep ultraviolet wavelengths will allow the fabrication of high-resolution components. The high-attenuation characteristic will allow the production of microscale and mesoscale optics of more phase levels.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. J. Swanson and W. B. Veldkamp, “High-efficiency, multi-level diffractive optical elements,” U.S. patent 4,895,790 (January 23, 1990).
  2. G. J. Swanson, “Binary optics technology: theoretical limits on the diffraction efficiency of multi-level diffractive optical elements,” Tech. Rep. 914 (MIT, Cambridge, Mass., 1991).
  3. W. Daschner, P. Long, R. Stein, C. Wu, and S. H. Lee, Appl. Opt. 36, 4675 (1997).
    [CrossRef]
  4. W. Daschner, P. Long, R. Stein, C. Wu, and S. H. Lee, J. Vac. Sci. Technol. B 14, 3730 (1996).
    [CrossRef]
  5. C. Wu, “Method of making high energy beam sensitive glass,” U.S. patent 5,078,771 (January 7, 1992).
  6. “Properties of HEBS-Glass,” (Canyon Materials, Inc., San Diego, Calif.), retrieved March 10, 2003, http://www.canyonmaterials.com/prop_hebs1.html.
  7. M. R. Wang and H. Su, Opt. Lett. 23, 876 (1998).
    [CrossRef]
  8. E. B. Kley, M. Cumme, L. C. Wittig, and C. Wu, Proc. SPIE 3633, 35 (1999).
    [CrossRef]
  9. C. Gimkiewicz, D. Hagedorn, J. Jahns, E. B. Kley, and F. Thoma, Appl. Opt. 38, 2986 (1999).
    [CrossRef]
  10. S. H. Lee, M. S. Jin, and M. L. Scott, “Method for fabricating continuous space variant attenuating lithography mask for fabrication of devices with three-dimensional structures and microelectronics,” U.S. patent 6,534,221 (March 18, 2003).

1999

1998

M. R. Wang and H. Su, Opt. Lett. 23, 876 (1998).
[CrossRef]

1997

1996

W. Daschner, P. Long, R. Stein, C. Wu, and S. H. Lee, J. Vac. Sci. Technol. B 14, 3730 (1996).
[CrossRef]

Cumme, M.

E. B. Kley, M. Cumme, L. C. Wittig, and C. Wu, Proc. SPIE 3633, 35 (1999).
[CrossRef]

Daschner, W.

W. Daschner, P. Long, R. Stein, C. Wu, and S. H. Lee, Appl. Opt. 36, 4675 (1997).
[CrossRef]

W. Daschner, P. Long, R. Stein, C. Wu, and S. H. Lee, J. Vac. Sci. Technol. B 14, 3730 (1996).
[CrossRef]

Gimkiewicz, C.

Hagedorn, D.

Jahns, J.

Jin, M. S.

S. H. Lee, M. S. Jin, and M. L. Scott, “Method for fabricating continuous space variant attenuating lithography mask for fabrication of devices with three-dimensional structures and microelectronics,” U.S. patent 6,534,221 (March 18, 2003).

Kley, E. B.

Lee, S. H.

W. Daschner, P. Long, R. Stein, C. Wu, and S. H. Lee, Appl. Opt. 36, 4675 (1997).
[CrossRef]

W. Daschner, P. Long, R. Stein, C. Wu, and S. H. Lee, J. Vac. Sci. Technol. B 14, 3730 (1996).
[CrossRef]

S. H. Lee, M. S. Jin, and M. L. Scott, “Method for fabricating continuous space variant attenuating lithography mask for fabrication of devices with three-dimensional structures and microelectronics,” U.S. patent 6,534,221 (March 18, 2003).

Long, P.

W. Daschner, P. Long, R. Stein, C. Wu, and S. H. Lee, Appl. Opt. 36, 4675 (1997).
[CrossRef]

W. Daschner, P. Long, R. Stein, C. Wu, and S. H. Lee, J. Vac. Sci. Technol. B 14, 3730 (1996).
[CrossRef]

Scott, M. L.

S. H. Lee, M. S. Jin, and M. L. Scott, “Method for fabricating continuous space variant attenuating lithography mask for fabrication of devices with three-dimensional structures and microelectronics,” U.S. patent 6,534,221 (March 18, 2003).

Stein, R.

W. Daschner, P. Long, R. Stein, C. Wu, and S. H. Lee, Appl. Opt. 36, 4675 (1997).
[CrossRef]

W. Daschner, P. Long, R. Stein, C. Wu, and S. H. Lee, J. Vac. Sci. Technol. B 14, 3730 (1996).
[CrossRef]

Su, H.

M. R. Wang and H. Su, Opt. Lett. 23, 876 (1998).
[CrossRef]

Swanson, G. J.

G. J. Swanson and W. B. Veldkamp, “High-efficiency, multi-level diffractive optical elements,” U.S. patent 4,895,790 (January 23, 1990).

G. J. Swanson, “Binary optics technology: theoretical limits on the diffraction efficiency of multi-level diffractive optical elements,” Tech. Rep. 914 (MIT, Cambridge, Mass., 1991).

Thoma, F.

Veldkamp, W. B.

G. J. Swanson and W. B. Veldkamp, “High-efficiency, multi-level diffractive optical elements,” U.S. patent 4,895,790 (January 23, 1990).

Wang, M. R.

M. R. Wang and H. Su, Opt. Lett. 23, 876 (1998).
[CrossRef]

Wittig, L. C.

E. B. Kley, M. Cumme, L. C. Wittig, and C. Wu, Proc. SPIE 3633, 35 (1999).
[CrossRef]

Wu, C.

E. B. Kley, M. Cumme, L. C. Wittig, and C. Wu, Proc. SPIE 3633, 35 (1999).
[CrossRef]

W. Daschner, P. Long, R. Stein, C. Wu, and S. H. Lee, Appl. Opt. 36, 4675 (1997).
[CrossRef]

W. Daschner, P. Long, R. Stein, C. Wu, and S. H. Lee, J. Vac. Sci. Technol. B 14, 3730 (1996).
[CrossRef]

C. Wu, “Method of making high energy beam sensitive glass,” U.S. patent 5,078,771 (January 7, 1992).

Appl. Opt.

J. Vac. Sci. Technol. B

W. Daschner, P. Long, R. Stein, C. Wu, and S. H. Lee, J. Vac. Sci. Technol. B 14, 3730 (1996).
[CrossRef]

Opt. Lett.

M. R. Wang and H. Su, Opt. Lett. 23, 876 (1998).
[CrossRef]

Proc. SPIE

E. B. Kley, M. Cumme, L. C. Wittig, and C. Wu, Proc. SPIE 3633, 35 (1999).
[CrossRef]

Other

G. J. Swanson and W. B. Veldkamp, “High-efficiency, multi-level diffractive optical elements,” U.S. patent 4,895,790 (January 23, 1990).

G. J. Swanson, “Binary optics technology: theoretical limits on the diffraction efficiency of multi-level diffractive optical elements,” Tech. Rep. 914 (MIT, Cambridge, Mass., 1991).

S. H. Lee, M. S. Jin, and M. L. Scott, “Method for fabricating continuous space variant attenuating lithography mask for fabrication of devices with three-dimensional structures and microelectronics,” U.S. patent 6,534,221 (March 18, 2003).

C. Wu, “Method of making high energy beam sensitive glass,” U.S. patent 5,078,771 (January 7, 1992).

“Properties of HEBS-Glass,” (Canyon Materials, Inc., San Diego, Calif.), retrieved March 10, 2003, http://www.canyonmaterials.com/prop_hebs1.html.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Comparison of optical density between HEBS glass and a new LAF.

Fig. 2
Fig. 2

Fabrication process of gray-scale mask.

Fig. 3
Fig. 3

Axicon in LAF measured by atomic force microscopy.

Fig. 4
Fig. 4

Transmission comparison between the designed and the fabricated gray-scale steps on the mask. The data were measured at a wavelength of 315 nm, which is the central wavelength of the spectral range of a Karl Suss MJB-UV300 aligner available for this measurement.

Metrics