Abstract

We discuss the relative merits of passive and active fiber cavities for ring-down. Ring-down times of 2 µs were recently demonstrated in passive cavities, but operation is restricted to weak evanescent wave interaction. We report on active cavities with amplifiers used for loss compensation, permitting the use of open-path micro-optic cells. Ring-down times of tens of microseconds can readily be achieved and extended to several hundred microseconds in gain-clamped cavities, but relaxation oscillations and system drift impose limits on accuracy and repeatability. A cavity enhancement of 2 orders of magnitude is realistically possible, and sensitivity may be further enhanced if ring-down is combined with established spectroscopic methods.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. O’Keefe and D. A. G. Deacon, Rev. Sci. Instrum. 59, 2544 (1988).
    [CrossRef]
  2. D. Romanini, in Cavity Ring-down Spectroscopy versus Intracavity Laser Absorption, K. W. Busch and M. A. Busch, eds. (American Chemical Society, New York, 1998), p. 125.
  3. A. O’Keefe, J. J. Scherer, and J. B. Paul, Chem. Phys. Lett. 307, 343 (1999).
  4. Y. He and B. J. Orr, Chem. Phys. Lett. 319, 131 (2000).
  5. R. Peeters, G. Berden, A. Apituley, and G. Meijer, Appl. Phys. B 71, 231 (2000).
    [CrossRef]
  6. L.-S. Ma, J. Ye, P. Dubé, and J. L. Hall, J. Opt. Soc. Am. B 16, 2255 (1999).
    [CrossRef]
  7. C. Ishibashi and H. Sasada, Jpn. J. Appl. Phys. 38, 920 (1999).
    [CrossRef]
  8. T. von Lerber and M. W. Sigrist, Appl. Opt. 41, 3567 (2002).
    [CrossRef] [PubMed]
  9. M. Gupta, H. Jiao, and A. O’Keefe, Opt. Lett. 27, 1878 (2002).
    [CrossRef]
  10. G. Stewart, K. Atherton, H. Yu, and B. Culshaw, Meas. Sci. Technol. 12, 843 (2001).
    [CrossRef]
  11. K. Atherton, G. Stewart, and B. Culshaw, Proc. SPIE 4577, 135 (2001).
  12. K. Atherton, G. Stewart, and B. Culshaw, presented at the 15th Optical Fiber Sensors Conference, Portland, Ore., May 6–10, 2002.
  13. H. L. Ho, W. Jin, and M. S. Demokan, Electron. Lett. 36, 1191 (2000).
    [CrossRef]

2002 (2)

2001 (2)

G. Stewart, K. Atherton, H. Yu, and B. Culshaw, Meas. Sci. Technol. 12, 843 (2001).
[CrossRef]

K. Atherton, G. Stewart, and B. Culshaw, Proc. SPIE 4577, 135 (2001).

2000 (3)

H. L. Ho, W. Jin, and M. S. Demokan, Electron. Lett. 36, 1191 (2000).
[CrossRef]

Y. He and B. J. Orr, Chem. Phys. Lett. 319, 131 (2000).

R. Peeters, G. Berden, A. Apituley, and G. Meijer, Appl. Phys. B 71, 231 (2000).
[CrossRef]

1999 (3)

L.-S. Ma, J. Ye, P. Dubé, and J. L. Hall, J. Opt. Soc. Am. B 16, 2255 (1999).
[CrossRef]

C. Ishibashi and H. Sasada, Jpn. J. Appl. Phys. 38, 920 (1999).
[CrossRef]

A. O’Keefe, J. J. Scherer, and J. B. Paul, Chem. Phys. Lett. 307, 343 (1999).

1988 (1)

A. O’Keefe and D. A. G. Deacon, Rev. Sci. Instrum. 59, 2544 (1988).
[CrossRef]

Apituley, A.

R. Peeters, G. Berden, A. Apituley, and G. Meijer, Appl. Phys. B 71, 231 (2000).
[CrossRef]

Atherton, K.

G. Stewart, K. Atherton, H. Yu, and B. Culshaw, Meas. Sci. Technol. 12, 843 (2001).
[CrossRef]

K. Atherton, G. Stewart, and B. Culshaw, Proc. SPIE 4577, 135 (2001).

K. Atherton, G. Stewart, and B. Culshaw, presented at the 15th Optical Fiber Sensors Conference, Portland, Ore., May 6–10, 2002.

Berden, G.

R. Peeters, G. Berden, A. Apituley, and G. Meijer, Appl. Phys. B 71, 231 (2000).
[CrossRef]

Culshaw, B.

G. Stewart, K. Atherton, H. Yu, and B. Culshaw, Meas. Sci. Technol. 12, 843 (2001).
[CrossRef]

K. Atherton, G. Stewart, and B. Culshaw, Proc. SPIE 4577, 135 (2001).

K. Atherton, G. Stewart, and B. Culshaw, presented at the 15th Optical Fiber Sensors Conference, Portland, Ore., May 6–10, 2002.

Deacon, D. A. G.

A. O’Keefe and D. A. G. Deacon, Rev. Sci. Instrum. 59, 2544 (1988).
[CrossRef]

Demokan, M. S.

H. L. Ho, W. Jin, and M. S. Demokan, Electron. Lett. 36, 1191 (2000).
[CrossRef]

Dubé, P.

Gupta, M.

Hall, J. L.

He, Y.

Y. He and B. J. Orr, Chem. Phys. Lett. 319, 131 (2000).

Ho, H. L.

H. L. Ho, W. Jin, and M. S. Demokan, Electron. Lett. 36, 1191 (2000).
[CrossRef]

Ishibashi, C.

C. Ishibashi and H. Sasada, Jpn. J. Appl. Phys. 38, 920 (1999).
[CrossRef]

Jiao, H.

Jin, W.

H. L. Ho, W. Jin, and M. S. Demokan, Electron. Lett. 36, 1191 (2000).
[CrossRef]

Ma, L.-S.

Meijer, G.

R. Peeters, G. Berden, A. Apituley, and G. Meijer, Appl. Phys. B 71, 231 (2000).
[CrossRef]

O’Keefe, A.

M. Gupta, H. Jiao, and A. O’Keefe, Opt. Lett. 27, 1878 (2002).
[CrossRef]

A. O’Keefe, J. J. Scherer, and J. B. Paul, Chem. Phys. Lett. 307, 343 (1999).

A. O’Keefe and D. A. G. Deacon, Rev. Sci. Instrum. 59, 2544 (1988).
[CrossRef]

Orr, B. J.

Y. He and B. J. Orr, Chem. Phys. Lett. 319, 131 (2000).

Paul, J. B.

A. O’Keefe, J. J. Scherer, and J. B. Paul, Chem. Phys. Lett. 307, 343 (1999).

Peeters, R.

R. Peeters, G. Berden, A. Apituley, and G. Meijer, Appl. Phys. B 71, 231 (2000).
[CrossRef]

Romanini, D.

D. Romanini, in Cavity Ring-down Spectroscopy versus Intracavity Laser Absorption, K. W. Busch and M. A. Busch, eds. (American Chemical Society, New York, 1998), p. 125.

Sasada, H.

C. Ishibashi and H. Sasada, Jpn. J. Appl. Phys. 38, 920 (1999).
[CrossRef]

Scherer, J. J.

A. O’Keefe, J. J. Scherer, and J. B. Paul, Chem. Phys. Lett. 307, 343 (1999).

Sigrist, M. W.

Stewart, G.

G. Stewart, K. Atherton, H. Yu, and B. Culshaw, Meas. Sci. Technol. 12, 843 (2001).
[CrossRef]

K. Atherton, G. Stewart, and B. Culshaw, Proc. SPIE 4577, 135 (2001).

K. Atherton, G. Stewart, and B. Culshaw, presented at the 15th Optical Fiber Sensors Conference, Portland, Ore., May 6–10, 2002.

von Lerber, T.

Ye, J.

Yu, H.

G. Stewart, K. Atherton, H. Yu, and B. Culshaw, Meas. Sci. Technol. 12, 843 (2001).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

R. Peeters, G. Berden, A. Apituley, and G. Meijer, Appl. Phys. B 71, 231 (2000).
[CrossRef]

Chem. Phys. Lett. (2)

A. O’Keefe, J. J. Scherer, and J. B. Paul, Chem. Phys. Lett. 307, 343 (1999).

Y. He and B. J. Orr, Chem. Phys. Lett. 319, 131 (2000).

Electron. Lett. (1)

H. L. Ho, W. Jin, and M. S. Demokan, Electron. Lett. 36, 1191 (2000).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

C. Ishibashi and H. Sasada, Jpn. J. Appl. Phys. 38, 920 (1999).
[CrossRef]

Meas. Sci. Technol. (1)

G. Stewart, K. Atherton, H. Yu, and B. Culshaw, Meas. Sci. Technol. 12, 843 (2001).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (1)

K. Atherton, G. Stewart, and B. Culshaw, Proc. SPIE 4577, 135 (2001).

Rev. Sci. Instrum. (1)

A. O’Keefe and D. A. G. Deacon, Rev. Sci. Instrum. 59, 2544 (1988).
[CrossRef]

Other (2)

D. Romanini, in Cavity Ring-down Spectroscopy versus Intracavity Laser Absorption, K. W. Busch and M. A. Busch, eds. (American Chemical Society, New York, 1998), p. 125.

K. Atherton, G. Stewart, and B. Culshaw, presented at the 15th Optical Fiber Sensors Conference, Portland, Ore., May 6–10, 2002.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Fiber-loop ring-down cavity incorporating a fiber amplifier: WDMs, wavelength-division multiplexers; DFB, distributed feedback.

Fig. 2
Fig. 2

Experimental ring-down pulses in a fiber loop with the gain just below threshold. Ring-down time is 10±2 µs.

Fig. 3
Fig. 3

Ring-down time and net loop loss as the pump power is increased above threshold.

Fig. 4
Fig. 4

Experimental ring-down pulses in a gain-clamped fiber cavity when the fiber’s lasing wavelength and the pulse’s wavelength are near coincidence. Ring-down time is 100 µs.

Fig. 5
Fig. 5

Typical form of the relaxation oscillations that arise when the pulse and the fiber’s lasing wavelengths are coincident.

Metrics