Abstract

Subwavelength focusing in mesoscale structures was measured in the near field. Specifically, we found that plane waves form focused beams in higher topographic regions when they propagate through mesoscale transparent air–dielectric structures. By finite-difference time-domain simulations we verified that light diffracted off topographic edges and its convergence at higher topographic regions are the mechanisms for focus. This subwavelength focusing effect provides a simple way for mass production of mesoscale periodic structures. We made subwavelength gratings and hole arrays to demonstrate their feasibility.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, Nature 386, 143 (1997).
    [CrossRef]
  2. J. D. Joannopoulos, R. D. Meade, and S. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).
  3. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, and T. Thio, Nature 391, 667 (1998).
    [CrossRef]
  4. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, Science 297, 820 (2002).
    [CrossRef] [PubMed]
  5. P. K. Wei, Y. C. Chen, and H. L. Chou, J. Opt. Soc. Am. B 20, 503 (2003).
    [CrossRef]
  6. A. Taflove and S. C. Hagness, Computational Electro-dynamics: the Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Boston, Mass., 2000).
  7. P. K. Wei, S. Y. Chiu, and W. L. Chang, Rev. Sci. Instrum. 73, 2624 (2002).
    [CrossRef]
  8. A. L. Campillo, J. W. P. Hsu, and G. W. Bryant, Opt. Lett. 27, 415 (2002).
    [CrossRef]
  9. K. Karrai and R. D. Grober, Appl. Phys. Lett. 66, 1842 (1995).
    [CrossRef]
  10. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, New York, 1999), Chap. 15.
    [CrossRef]
  11. R. C. Enger and S. K. Case, Appl. Opt. 22, 3221 (1983).
    [CrossRef]
  12. Y. Ono, Y. Kimura, Y. Ohta, and N. Nishida, Appl. Opt. 26, 1142 (1987).
    [CrossRef] [PubMed]
  13. K. O. Hill, Malo F. Bilodeau, D. C. Johnson, and J. Albert, Appl. Phys. Lett. 62, 1035 (1993).
    [CrossRef]

2003 (1)

P. K. Wei, Y. C. Chen, and H. L. Chou, J. Opt. Soc. Am. B 20, 503 (2003).
[CrossRef]

2002 (3)

P. K. Wei, S. Y. Chiu, and W. L. Chang, Rev. Sci. Instrum. 73, 2624 (2002).
[CrossRef]

A. L. Campillo, J. W. P. Hsu, and G. W. Bryant, Opt. Lett. 27, 415 (2002).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, Science 297, 820 (2002).
[CrossRef] [PubMed]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, and T. Thio, Nature 391, 667 (1998).
[CrossRef]

1997 (1)

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, Nature 386, 143 (1997).
[CrossRef]

1995 (1)

K. Karrai and R. D. Grober, Appl. Phys. Lett. 66, 1842 (1995).
[CrossRef]

1993 (1)

K. O. Hill, Malo F. Bilodeau, D. C. Johnson, and J. Albert, Appl. Phys. Lett. 62, 1035 (1993).
[CrossRef]

1987 (1)

1983 (1)

R. C. Enger and S. K. Case, Appl. Opt. 22, 3221 (1983).
[CrossRef]

Albert, J.

K. O. Hill, Malo F. Bilodeau, D. C. Johnson, and J. Albert, Appl. Phys. Lett. 62, 1035 (1993).
[CrossRef]

Bilodeau, Malo F.

K. O. Hill, Malo F. Bilodeau, D. C. Johnson, and J. Albert, Appl. Phys. Lett. 62, 1035 (1993).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, New York, 1999), Chap. 15.
[CrossRef]

Bryant, G. W.

Campillo, A. L.

Case, S. K.

R. C. Enger and S. K. Case, Appl. Opt. 22, 3221 (1983).
[CrossRef]

Chang, W. L.

P. K. Wei, S. Y. Chiu, and W. L. Chang, Rev. Sci. Instrum. 73, 2624 (2002).
[CrossRef]

Chen, Y. C.

P. K. Wei, Y. C. Chen, and H. L. Chou, J. Opt. Soc. Am. B 20, 503 (2003).
[CrossRef]

Chiu, S. Y.

P. K. Wei, S. Y. Chiu, and W. L. Chang, Rev. Sci. Instrum. 73, 2624 (2002).
[CrossRef]

Chou, H. L.

P. K. Wei, Y. C. Chen, and H. L. Chou, J. Opt. Soc. Am. B 20, 503 (2003).
[CrossRef]

Degiron, A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, Science 297, 820 (2002).
[CrossRef] [PubMed]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, Science 297, 820 (2002).
[CrossRef] [PubMed]

Ebbesen, T. W.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, Science 297, 820 (2002).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, and T. Thio, Nature 391, 667 (1998).
[CrossRef]

Enger, R. C.

R. C. Enger and S. K. Case, Appl. Opt. 22, 3221 (1983).
[CrossRef]

Fan, S.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, Nature 386, 143 (1997).
[CrossRef]

Garcia-Vidal, F. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, Science 297, 820 (2002).
[CrossRef] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, and T. Thio, Nature 391, 667 (1998).
[CrossRef]

Grober, R. D.

K. Karrai and R. D. Grober, Appl. Phys. Lett. 66, 1842 (1995).
[CrossRef]

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electro-dynamics: the Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Boston, Mass., 2000).

Hill, K. O.

K. O. Hill, Malo F. Bilodeau, D. C. Johnson, and J. Albert, Appl. Phys. Lett. 62, 1035 (1993).
[CrossRef]

Hsu, J. W. P.

Joannopoulos, J. D.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, Nature 386, 143 (1997).
[CrossRef]

J. D. Joannopoulos, R. D. Meade, and S. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).

Johnson, D. C.

K. O. Hill, Malo F. Bilodeau, D. C. Johnson, and J. Albert, Appl. Phys. Lett. 62, 1035 (1993).
[CrossRef]

Karrai, K.

K. Karrai and R. D. Grober, Appl. Phys. Lett. 66, 1842 (1995).
[CrossRef]

Kimura, Y.

Lezec, H. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, Science 297, 820 (2002).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, and T. Thio, Nature 391, 667 (1998).
[CrossRef]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, Science 297, 820 (2002).
[CrossRef] [PubMed]

Martin-Moreno, L.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, Science 297, 820 (2002).
[CrossRef] [PubMed]

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, and S. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).

Nishida, N.

Ohta, Y.

Ono, Y.

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electro-dynamics: the Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Boston, Mass., 2000).

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, and T. Thio, Nature 391, 667 (1998).
[CrossRef]

Villeneuve, P. R.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, Nature 386, 143 (1997).
[CrossRef]

Wei, P. K.

P. K. Wei, Y. C. Chen, and H. L. Chou, J. Opt. Soc. Am. B 20, 503 (2003).
[CrossRef]

P. K. Wei, S. Y. Chiu, and W. L. Chang, Rev. Sci. Instrum. 73, 2624 (2002).
[CrossRef]

Winn, S. N.

J. D. Joannopoulos, R. D. Meade, and S. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, New York, 1999), Chap. 15.
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

K. O. Hill, Malo F. Bilodeau, D. C. Johnson, and J. Albert, Appl. Phys. Lett. 62, 1035 (1993).
[CrossRef]

K. Karrai and R. D. Grober, Appl. Phys. Lett. 66, 1842 (1995).
[CrossRef]

J. Opt. Soc. Am. B (1)

P. K. Wei, Y. C. Chen, and H. L. Chou, J. Opt. Soc. Am. B 20, 503 (2003).
[CrossRef]

Nature (2)

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, Nature 386, 143 (1997).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, and T. Thio, Nature 391, 667 (1998).
[CrossRef]

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

P. K. Wei, S. Y. Chiu, and W. L. Chang, Rev. Sci. Instrum. 73, 2624 (2002).
[CrossRef]

Science (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, Science 297, 820 (2002).
[CrossRef] [PubMed]

Other (3)

J. D. Joannopoulos, R. D. Meade, and S. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).

A. Taflove and S. C. Hagness, Computational Electro-dynamics: the Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Boston, Mass., 2000).

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, New York, 1999), Chap. 15.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Calculated intensity distribution of light propagating through a subwavelength aperture. (b) Poynting vectors of the optical wave near the aperture. (c) Intensity distribution for light propagating through subwavelength gratings. (d) Poynting vectors of light in the subwavelength gratings. Calculated intensity distributions of light propagating through gratings of (e) 200-nm and (f) 1.2µm periods.

Fig. 2
Fig. 2

(a) Topographic image of rod arrays obtained by shear-force feedback. Dashed line, position for propagation field measurement. (b) Optical near-field image at the rod arrays. (c) Optical field image measured 1 µm away from the rod arrays. (d) Propagation field from a row of rods. Periodically focused beams were measured.

Fig. 3
Fig. 3

(a) Experimental setup for mass production of subwavelength structures. (b) Scanning electron microscope images for PMMA gratings and (c) the transferred PR pattern. (d) Cross section of the PR pattern. The depth was 0.9 µm and the aspect ratio was larger than 2. (e) Hole arrays in the PR. The pattern was made by the focused beams from PMMA rod arrays as shown in Fig. 2(a).

Metrics