Abstract

We present measurements of dark-line resonances excited in cesium atoms confined in submillimeter cells with a buffer gas. The width and contrast of the resonances were measured for cell lengths as low as 100 µm. The measured atomic Q factors are reduced in small cells because of frequent collisions of atoms with the cell walls. However, the contrast of coherent population trapping resonances measured in the small cells is similar in magnitude to that obtained in centimeter-sized cells, but substantially more laser intensity is needed to excite the resonance fully when increased buffer-gas pressure is used. The effect of the higher intensity on the linewidth is reduced because the intensity broadening rate decreases with buffer-gas pressure.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Vig, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 40, 522 (1993).
    [CrossRef]
  2. J. Kusters and C. Adams, RF Design 22(5), 28 (1999).
  3. J. Kitching, S. Knappe, and L. Hollberg, Appl. Phys. Lett. 81, 553 (2002).
    [CrossRef]
  4. E. Arimondo, in Progress in Optics, E. Wolf, ed., (Elsevier, New York, 1996), Vol. 35 pp. 257–355.
    [CrossRef]
  5. J. E. Thomas, P. R. Hemmer, S. Ezekiel, C. C. Leiby, R. H. Picard, and C. R. Willis, Phys. Rev. Lett. 48, 867 (1982).
    [CrossRef]
  6. J. Kitching, S. Knappe, V. Vukicevic, L. Hollberg, R. Wynands, and W. Weidmann, IEEE Trans. Instrum. Meas. 49, 1313 (2000).
    [CrossRef]
  7. N. Beverini, P. Minguzzi, and F. Strumia, Phys. Rev. A 4, 550 (1971).
    [CrossRef]
  8. C. Affolderbach, S. Knappe, R. Wynands, A. V. Taichenachev, and V. I. Yudin, Phys. Rev. A 65, 043810 (2002).
    [CrossRef]
  9. M. Zhu and Z. Miao, “Coherent population trapping-based frequency standard and method for generating a frequency standard incorporating a quantum absorber that generates the CPT state with high frequency,” U.S. Patent6,359,916 (March19, 2002).
  10. M. Stähler, R. Wynands, S. Knappe, J. Kitching, L. Hollberg, A. Taichenachev, and V. Yudin, Opt. Lett. 27, 1472 (2002).
    [CrossRef]
  11. S. Knappe, R. Wynands, J. Kitching, H. G. Robinson, and L. Hollberg, J. Opt. Soc. Am. B 18, 1545 (2001).
    [CrossRef]
  12. N. D. Bhaskar, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42, 15 (1995).
    [CrossRef]
  13. Y.-Y. Jau, A. B. Post, N. N. Kuzma, M. V. Romalis, and W. Happer, in Proceedings of the 2003 IEEE International Frequency Control Symposium (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2003), pp. 33–36.
  14. A. Godone, F. Levi, S. Micalizio, and J. Vanier, Eur. Phys. J. D 18, 5 (2002).
  15. D. Kosachev, Quantum Electron. 25, 1089 (1995).
    [CrossRef]

2002 (4)

J. Kitching, S. Knappe, and L. Hollberg, Appl. Phys. Lett. 81, 553 (2002).
[CrossRef]

C. Affolderbach, S. Knappe, R. Wynands, A. V. Taichenachev, and V. I. Yudin, Phys. Rev. A 65, 043810 (2002).
[CrossRef]

A. Godone, F. Levi, S. Micalizio, and J. Vanier, Eur. Phys. J. D 18, 5 (2002).

M. Stähler, R. Wynands, S. Knappe, J. Kitching, L. Hollberg, A. Taichenachev, and V. Yudin, Opt. Lett. 27, 1472 (2002).
[CrossRef]

2001 (1)

2000 (1)

J. Kitching, S. Knappe, V. Vukicevic, L. Hollberg, R. Wynands, and W. Weidmann, IEEE Trans. Instrum. Meas. 49, 1313 (2000).
[CrossRef]

1999 (1)

J. Kusters and C. Adams, RF Design 22(5), 28 (1999).

1995 (2)

N. D. Bhaskar, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42, 15 (1995).
[CrossRef]

D. Kosachev, Quantum Electron. 25, 1089 (1995).
[CrossRef]

1993 (1)

J. R. Vig, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 40, 522 (1993).
[CrossRef]

1982 (1)

J. E. Thomas, P. R. Hemmer, S. Ezekiel, C. C. Leiby, R. H. Picard, and C. R. Willis, Phys. Rev. Lett. 48, 867 (1982).
[CrossRef]

1971 (1)

N. Beverini, P. Minguzzi, and F. Strumia, Phys. Rev. A 4, 550 (1971).
[CrossRef]

Adams, C.

J. Kusters and C. Adams, RF Design 22(5), 28 (1999).

Affolderbach, C.

C. Affolderbach, S. Knappe, R. Wynands, A. V. Taichenachev, and V. I. Yudin, Phys. Rev. A 65, 043810 (2002).
[CrossRef]

Arimondo, E.

E. Arimondo, in Progress in Optics, E. Wolf, ed., (Elsevier, New York, 1996), Vol. 35 pp. 257–355.
[CrossRef]

Beverini, N.

N. Beverini, P. Minguzzi, and F. Strumia, Phys. Rev. A 4, 550 (1971).
[CrossRef]

Bhaskar, N. D.

N. D. Bhaskar, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42, 15 (1995).
[CrossRef]

Ezekiel, S.

J. E. Thomas, P. R. Hemmer, S. Ezekiel, C. C. Leiby, R. H. Picard, and C. R. Willis, Phys. Rev. Lett. 48, 867 (1982).
[CrossRef]

Godone, A.

A. Godone, F. Levi, S. Micalizio, and J. Vanier, Eur. Phys. J. D 18, 5 (2002).

Happer, W.

Y.-Y. Jau, A. B. Post, N. N. Kuzma, M. V. Romalis, and W. Happer, in Proceedings of the 2003 IEEE International Frequency Control Symposium (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2003), pp. 33–36.

Hemmer, P. R.

J. E. Thomas, P. R. Hemmer, S. Ezekiel, C. C. Leiby, R. H. Picard, and C. R. Willis, Phys. Rev. Lett. 48, 867 (1982).
[CrossRef]

Hollberg, L.

J. Kitching, S. Knappe, and L. Hollberg, Appl. Phys. Lett. 81, 553 (2002).
[CrossRef]

M. Stähler, R. Wynands, S. Knappe, J. Kitching, L. Hollberg, A. Taichenachev, and V. Yudin, Opt. Lett. 27, 1472 (2002).
[CrossRef]

S. Knappe, R. Wynands, J. Kitching, H. G. Robinson, and L. Hollberg, J. Opt. Soc. Am. B 18, 1545 (2001).
[CrossRef]

J. Kitching, S. Knappe, V. Vukicevic, L. Hollberg, R. Wynands, and W. Weidmann, IEEE Trans. Instrum. Meas. 49, 1313 (2000).
[CrossRef]

Jau, Y.-Y.

Y.-Y. Jau, A. B. Post, N. N. Kuzma, M. V. Romalis, and W. Happer, in Proceedings of the 2003 IEEE International Frequency Control Symposium (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2003), pp. 33–36.

Kitching, J.

J. Kitching, S. Knappe, and L. Hollberg, Appl. Phys. Lett. 81, 553 (2002).
[CrossRef]

M. Stähler, R. Wynands, S. Knappe, J. Kitching, L. Hollberg, A. Taichenachev, and V. Yudin, Opt. Lett. 27, 1472 (2002).
[CrossRef]

S. Knappe, R. Wynands, J. Kitching, H. G. Robinson, and L. Hollberg, J. Opt. Soc. Am. B 18, 1545 (2001).
[CrossRef]

J. Kitching, S. Knappe, V. Vukicevic, L. Hollberg, R. Wynands, and W. Weidmann, IEEE Trans. Instrum. Meas. 49, 1313 (2000).
[CrossRef]

Knappe, S.

J. Kitching, S. Knappe, and L. Hollberg, Appl. Phys. Lett. 81, 553 (2002).
[CrossRef]

C. Affolderbach, S. Knappe, R. Wynands, A. V. Taichenachev, and V. I. Yudin, Phys. Rev. A 65, 043810 (2002).
[CrossRef]

M. Stähler, R. Wynands, S. Knappe, J. Kitching, L. Hollberg, A. Taichenachev, and V. Yudin, Opt. Lett. 27, 1472 (2002).
[CrossRef]

S. Knappe, R. Wynands, J. Kitching, H. G. Robinson, and L. Hollberg, J. Opt. Soc. Am. B 18, 1545 (2001).
[CrossRef]

J. Kitching, S. Knappe, V. Vukicevic, L. Hollberg, R. Wynands, and W. Weidmann, IEEE Trans. Instrum. Meas. 49, 1313 (2000).
[CrossRef]

Kosachev, D.

D. Kosachev, Quantum Electron. 25, 1089 (1995).
[CrossRef]

Kusters, J.

J. Kusters and C. Adams, RF Design 22(5), 28 (1999).

Kuzma, N. N.

Y.-Y. Jau, A. B. Post, N. N. Kuzma, M. V. Romalis, and W. Happer, in Proceedings of the 2003 IEEE International Frequency Control Symposium (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2003), pp. 33–36.

Leiby, C. C.

J. E. Thomas, P. R. Hemmer, S. Ezekiel, C. C. Leiby, R. H. Picard, and C. R. Willis, Phys. Rev. Lett. 48, 867 (1982).
[CrossRef]

Levi, F.

A. Godone, F. Levi, S. Micalizio, and J. Vanier, Eur. Phys. J. D 18, 5 (2002).

Miao, Z.

M. Zhu and Z. Miao, “Coherent population trapping-based frequency standard and method for generating a frequency standard incorporating a quantum absorber that generates the CPT state with high frequency,” U.S. Patent6,359,916 (March19, 2002).

Micalizio, S.

A. Godone, F. Levi, S. Micalizio, and J. Vanier, Eur. Phys. J. D 18, 5 (2002).

Minguzzi, P.

N. Beverini, P. Minguzzi, and F. Strumia, Phys. Rev. A 4, 550 (1971).
[CrossRef]

Picard, R. H.

J. E. Thomas, P. R. Hemmer, S. Ezekiel, C. C. Leiby, R. H. Picard, and C. R. Willis, Phys. Rev. Lett. 48, 867 (1982).
[CrossRef]

Post, A. B.

Y.-Y. Jau, A. B. Post, N. N. Kuzma, M. V. Romalis, and W. Happer, in Proceedings of the 2003 IEEE International Frequency Control Symposium (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2003), pp. 33–36.

Robinson, H. G.

Romalis, M. V.

Y.-Y. Jau, A. B. Post, N. N. Kuzma, M. V. Romalis, and W. Happer, in Proceedings of the 2003 IEEE International Frequency Control Symposium (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2003), pp. 33–36.

Stähler, M.

Strumia, F.

N. Beverini, P. Minguzzi, and F. Strumia, Phys. Rev. A 4, 550 (1971).
[CrossRef]

Taichenachev, A.

Taichenachev, A. V.

C. Affolderbach, S. Knappe, R. Wynands, A. V. Taichenachev, and V. I. Yudin, Phys. Rev. A 65, 043810 (2002).
[CrossRef]

Thomas, J. E.

J. E. Thomas, P. R. Hemmer, S. Ezekiel, C. C. Leiby, R. H. Picard, and C. R. Willis, Phys. Rev. Lett. 48, 867 (1982).
[CrossRef]

Vanier, J.

A. Godone, F. Levi, S. Micalizio, and J. Vanier, Eur. Phys. J. D 18, 5 (2002).

Vig, J. R.

J. R. Vig, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 40, 522 (1993).
[CrossRef]

Vukicevic, V.

J. Kitching, S. Knappe, V. Vukicevic, L. Hollberg, R. Wynands, and W. Weidmann, IEEE Trans. Instrum. Meas. 49, 1313 (2000).
[CrossRef]

Weidmann, W.

J. Kitching, S. Knappe, V. Vukicevic, L. Hollberg, R. Wynands, and W. Weidmann, IEEE Trans. Instrum. Meas. 49, 1313 (2000).
[CrossRef]

Willis, C. R.

J. E. Thomas, P. R. Hemmer, S. Ezekiel, C. C. Leiby, R. H. Picard, and C. R. Willis, Phys. Rev. Lett. 48, 867 (1982).
[CrossRef]

Wynands, R.

C. Affolderbach, S. Knappe, R. Wynands, A. V. Taichenachev, and V. I. Yudin, Phys. Rev. A 65, 043810 (2002).
[CrossRef]

M. Stähler, R. Wynands, S. Knappe, J. Kitching, L. Hollberg, A. Taichenachev, and V. Yudin, Opt. Lett. 27, 1472 (2002).
[CrossRef]

S. Knappe, R. Wynands, J. Kitching, H. G. Robinson, and L. Hollberg, J. Opt. Soc. Am. B 18, 1545 (2001).
[CrossRef]

J. Kitching, S. Knappe, V. Vukicevic, L. Hollberg, R. Wynands, and W. Weidmann, IEEE Trans. Instrum. Meas. 49, 1313 (2000).
[CrossRef]

Yudin, V.

Yudin, V. I.

C. Affolderbach, S. Knappe, R. Wynands, A. V. Taichenachev, and V. I. Yudin, Phys. Rev. A 65, 043810 (2002).
[CrossRef]

Zhu, M.

M. Zhu and Z. Miao, “Coherent population trapping-based frequency standard and method for generating a frequency standard incorporating a quantum absorber that generates the CPT state with high frequency,” U.S. Patent6,359,916 (March19, 2002).

Appl. Phys. Lett. (1)

J. Kitching, S. Knappe, and L. Hollberg, Appl. Phys. Lett. 81, 553 (2002).
[CrossRef]

Eur. Phys. J. D (1)

A. Godone, F. Levi, S. Micalizio, and J. Vanier, Eur. Phys. J. D 18, 5 (2002).

IEEE Trans. Instrum. Meas. (1)

J. Kitching, S. Knappe, V. Vukicevic, L. Hollberg, R. Wynands, and W. Weidmann, IEEE Trans. Instrum. Meas. 49, 1313 (2000).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (2)

J. R. Vig, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 40, 522 (1993).
[CrossRef]

N. D. Bhaskar, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42, 15 (1995).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

Phys. Rev. A (2)

N. Beverini, P. Minguzzi, and F. Strumia, Phys. Rev. A 4, 550 (1971).
[CrossRef]

C. Affolderbach, S. Knappe, R. Wynands, A. V. Taichenachev, and V. I. Yudin, Phys. Rev. A 65, 043810 (2002).
[CrossRef]

Phys. Rev. Lett. (1)

J. E. Thomas, P. R. Hemmer, S. Ezekiel, C. C. Leiby, R. H. Picard, and C. R. Willis, Phys. Rev. Lett. 48, 867 (1982).
[CrossRef]

Quantum Electron. (1)

D. Kosachev, Quantum Electron. 25, 1089 (1995).
[CrossRef]

RF Design (1)

J. Kusters and C. Adams, RF Design 22(5), 28 (1999).

Other (3)

E. Arimondo, in Progress in Optics, E. Wolf, ed., (Elsevier, New York, 1996), Vol. 35 pp. 257–355.
[CrossRef]

M. Zhu and Z. Miao, “Coherent population trapping-based frequency standard and method for generating a frequency standard incorporating a quantum absorber that generates the CPT state with high frequency,” U.S. Patent6,359,916 (March19, 2002).

Y.-Y. Jau, A. B. Post, N. N. Kuzma, M. V. Romalis, and W. Happer, in Proceedings of the 2003 IEEE International Frequency Control Symposium (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2003), pp. 33–36.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup. The resonance signal is normalized to the Doppler background absorption, measured at 1.1 mW/cm2 and a gap size of 580 µm.

Fig. 2
Fig. 2

Full width at half-maximum (as a function of surface separation) of the CPT resonances extrapolated to zero light intensity for three different Ne pressures: 0.8 (circles), 4 (squares), and 8 kPa (triangles). The lines are the theoretical predictions taking into account diffusion and buffer gas collisions for the same pressures: 0.8 (solid), 4 (dashed), and 8 kPa (dotted).

Fig. 3
Fig. 3

Contrast of the Lorentzian fits to the CPT resonances as a function of surface separation at 350 µW/cm2 for three different Ne pressures: 4 (squares), 6 (circles), and 8 kPa (triangles). The open circles correspond to a higher light intensity of 1.4 mW/cm2 at 6 kPa. Inset: linear broadening rate of the CPT resonance with laser intensity at a 380µm surface separation as a function of Ne pressure.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

νCPTξpp+ξLpL2,

Metrics